\#\# 1001. Maximum Multiple

+ Time limit: 2 seconds
+ Memory limit: 32 megabytes

Problem Description

Given an integer n, Chiaki would like to find three positive
integers x, y and z such that: $n=x+y+z, x|n, y| n, z \mid n$ and $x y z$ is maximum.

Input

There are multiple test cases. The first line of input contains an integer T (1 $\leqslant \mathrm{T} \leqslant 10^{\wedge} 6$), indicating the number of test cases. For each test case:
The first line contains an integer $n \quad\left(1 \leqslant n \leqslant 10^{\wedge} 6\right)$.

Output

For each test case, output an integer denoting the maximum xyz. If there no such integers, output -1 instead.

Sample Input
3
1

2

3

Sample Output
-1
-1

\#\# 1002. Balanced Sequence

\author{

+ Time limit: 1 second
 + Memory limit: 32 megabytes
}

Problem Description

Chiaki has n strings $s 1, s 2, \cdots, s n$ consisting of '(' and ')'. A string of this type is said to be balanced:

+ if it is the empty string
+ if A and B are balanced, $A B$ is balanced,
+ if A is balanced, (A) is balanced.
Chiaki can reorder the strings and then concatenate them get a new string t.
Let $f(t)$ be the length of the longest balanced subsequence (not necessary continuous)
of t. Chiaki would like to know the maximum value of $f(t)$ for all possible t.

Input

There are multiple test cases. The first line of input contains an integer T, indicating the number of test cases. For each test case:
The first line contains an integer $n(1 \leqslant n \leqslant 105)$-- the number of strings.
Each of the next n lines contains a string si $(1 \leqslant \mid$ si $\mid \leqslant 105)$ consisting of ` (' and ')'.

It is guaranteed that the sum of all \mid si \mid does not exceeds 5×106.

Output

For each test case, output an integer denoting the answer.

Sample Input

2
1
) () (() (
2
)
)(

Sample Output

\#\# 1003. Triangle Partition

+ Time limit: 1 second
+ Memory limit: 32 megabytes

Problem Description

Chiaki has 3 n points $\mathrm{p} 1, \mathrm{p} 2, \cdots, \mathrm{p} 3 \mathrm{n}$. It is guaranteed that no three points are collinear.
Chiaki would like to construct n disjoint triangles where each vertex comes from the $3 n$ points.

Input

There are multiple test cases. The first line of input contains an integer T, indicating the number of test cases. For each test case:
The first line contains an integer $n(1 \leqslant n \leqslant 1000)$-- the number of triangle to construct.
Each of the next $3 n$ lines contains two integers $x i$ and $y i \quad(-109 \leqslant x i, y i \leqslant 109)$. It is guaranteed that the sum of all n does not exceed 10000 .

Output

For each test case, output n lines contain three integers ai, bi, ci ($1 \leqslant a i, b i, c i$ $\leqslant 3 n$) each denoting the indices of points the i-th triangle use. If there are multiple solutions, you can output any of them.

Sample Input
1
1
12
23
35

Sample Output
123

\#\# 1004. Distinct Values

+ Time limit: 2 seconds
+ Memory limit: 32 megabytes

Problem Description

Chiaki has an array of n positive integers. You are told some facts about the array: for every two elements ai and $a j$ in the subarray al..r $(1 \leqslant i<j \leqslant r)$, $a i \neq$ ajholds.
Chiaki would like to find a lexicographically minimal array which meets the facts.

Input

There are multiple test cases. The first line of input contains an integer T, indicating the number of test cases. For each test case:
The first line contains two integers n and $m(1 \leqslant n, m \leqslant 105)$-- the length of the array and the number of facts. Each of the next m lines contains two integers 1 iand ri $(1 \leqslant 1 i \leqslant r i \leqslant n)$.
It is guaranteed that neither the sum of all n nor the sum of all m exceeds 106 .

Output

For each test case, output n integers denoting the lexicographically minimal array. Integers should be separated by a single space, and no extra spaces are allowed at the end of lines.

Sample Input
3
21
12
42
12
34
52
13
24

Sample Output
12
1212
12311

\#\# 1005. Maximum Weighted Matching

+ Time limit: 4 seconds
+ Memory limit: 64 megabytes

Problem Description

Chiaki is good at generating special graphs. Initially, she has a graph with only two vertices connected by an edge. Each time, she can choose an edge (u, v), make a copy of it, insert some new vertices (maybe zero) in the edge (i.e. let the new vertices be $\mathrm{t} 1, \mathrm{t} 2, \cdots, \mathrm{tk}_{\mathrm{k}}$, Chiaki would insert edges ($\mathrm{u}, \mathrm{t} 1$), ($\left.\mathrm{t} 1, \mathrm{t} 2\right)$, ($\mathrm{tk}-1, \mathrm{tk}$), (tk, v) into the graph).
Given a weighted graph generated by above operations, Chiaki would like to know the maximum weighted matching of the graph and the number different maximum weighted matchings modulo (109+7)).
A matching in a graph is a set of pairwise non-adjacent edges, none of which are loops; that is, no two edges share a common vertex.
A maximum weighted matching is defined as a matching where the sum of the values of the edges in the matching have a maximal value.

Input

There are multiple test cases. The first line of input contains an integer T, indicating the number of test cases. For each test case:
The first line contains two integers n and $m \quad(1 \leqslant n, m \leqslant 105)$-- the number of vertices and the number of edges.
Each of the next m lines contains three integers $u i, \quad v i$ and $w i \quad(1 \leqslant u i, v i \leqslant n, 1$ \leqslant wi $\leqslant 109$) -- deonting an edge between $u i$ and vi with weight wi.
It is guaranteed that neither the sum of all n nor the sum of all m exceeds 106 .

Output

For each test case, output two integers separated by a single space. The first one is the sum of weight and the second one is the number of different maximum weighted matchings modulo (109+7).

Sample Input
2
67
121
231
451
561
141
251
361
45
121
131
141
231
341

Sample Output
33
22

\#\# 1006. Period Sequence

+ Time limit: 6 seconds
+ Memory limit: 32 megabytes

Problem Description

Chiaki has n integers $s 0, s 1, \cdots, s n-1$. She has defined an infinite sequence S in the following way: $S k=s k m o d n+n \cdot L k / n 」$, where k is a zero based index.

For a continuous subsequence $\mathrm{S}[1 . . \mathrm{r}]$, let cntx be the number of occurrence of x in the subsequence $S[1 . . r]$. Then the value of $S[1 . . r]$ is defined as follows

$$
f(1, r)=\sum x \cdot \quad \operatorname{cnt}_{x}^{2}
$$

x

For two integers a and $b(a \leqslant b)$, Chiaki would like to find the value of

$$
\begin{aligned}
& \left(\sum f(1, r)\right) \bmod \left(10^{\wedge} 9+7\right) \\
& a \leqslant 1 \leqslant r \leqslant b
\end{aligned}
$$

Input

There are multiple test cases. The first line of input contains an integer T, indicating the number of test cases. For each test case:
The first line contains three integers n, a and $b(1 \leqslant n \leqslant 2000,0 \leqslant a \leqslant b \leqslant 1018)$. The second line contains n integers $\mathrm{s} 0, \mathrm{~s} 1, \cdots, \mathrm{sn}-1 \quad(0 \leqslant \mathrm{si} \leqslant 109)$.
It is guaranteed that the sum of all n does not exceed 20000 .

Output

For each test case, output an integer denoting the answer.

Sample Input
4
326
213
527
21512
448
21517
359
252

Sample Output
179
268
369
437

\#\# 1007. Chiaki Sequence Revisited

+ Time limit: 1 second
+ Memory limit: 32 megabytes

Problem Description

Chiaki is interested in an infinite sequence a1, a2, a3,..., which is defined as follows:

$$
a_{n}= \begin{cases}1 & n=1,2 \\ a_{n-a_{n-1}}+a_{n-1-a_{n-2}} & n \geq 3\end{cases}
$$

Chiaki would like to know the sum of the first n terms of the sequence, i.e. Σ $\mathrm{i}=1$ nai. As this number may be very large, Chiaki is only interested in its remainder modulo ($10^{\wedge} 9+7$).

Input

There are multiple test cases. The first line of input contains an integer $\mathrm{T}(1 \leqslant \mathrm{~T}$ $\leqslant 10^{\wedge} 5$), indicating the number of test cases. For each test case:
The first line contains an integer $n \quad\left(1 \leqslant n \leqslant 10^{\wedge} 18\right)$.

Output

For each test case, output an integer denoting the answer.

Sample Input
10
1
2
3
4
5
6
7
8
9
10

Sample Output
1
2
4
6

13
17
21
26

\#\# 1008. RMQ Similar Sequence

+ Time limit: 2 seconds
+ Memory limit: 128 megabytes

Problem Description

Chiaki has a sequence $A=\{a 1, a 2, \cdots, a n\}$. Let $R M Q(A, 1, r)$ be the minimum $i \quad(1 \leqslant i \leqslant$ r) such that ai is the maximum value in al, al $+1, \cdots$, ar.

Two sequences A and B are called \textit \{RMQ Similar\}, if they have the same length n and for every $1 \leqslant 1 \leqslant r \leqslant n, \quad \operatorname{RMQ}(A, 1, r)=R M Q(B, l, r)$.

For a given the sequence $A=\{a 1, a 2, \cdots, a n\}$, define the weight of a sequence $B=\{b 1, b 2, \cdots, b n\}$ be $\sum i=1 n b i$ (i.e. the sum of all elements in B) if sequence Band sequence A are RMQ Similar, or 0 otherwise. If each element of B is a real number chosen independently and uniformly at random between 0 and 1 , find the expected weight of B.

Input

There are multiple test cases. The first line of input contains an integer T, indicating the number of test cases. For each test case:
The first line contains an integer $n\left(1 \leqslant n \leqslant 10^{\wedge} 6\right)$-- the length of the sequence. The second line contains n integers $a 1, a 2, \cdots$, an $(1 \leqslant a i \leqslant n)$ denoting the sequence. It is guaranteed that the sum of all n does not exceed $3 \times 10^{\wedge} 6$.

Output

For each test case, output the answer as a value of a rational number modulo $10^{\wedge} 9+7$. Formally, it is guaranteed that under given constraints the probability is always a rational number pq (p and q are integer and coprime, q is positive), such that q is not divisible by $10^{\wedge} 9+7$. Output such integer a between 0 and $10^{\wedge} 9+6$ that $\mathrm{p}-\mathrm{aq}$ is divisible by $10^{\wedge} 9+7$.

Sample Input
3
3
123
3
121
5
12321

Sample Output
250000002
500000004
125000001

\#\# 1009. Lyndon Substring

+ Time limit: 3 seconds
+ Memory limit: 64 megabytes

Problem Description

A string w is said to be a Lyndon word if w is lexicographically smaller than any of its cyclic rotations.
The longest Lyndon substring of a string s is the longest substring of s which is a Lyndon word.
Chiaki has n strings $s 1, s 2, \cdots, s n$. She has some queries: for some pair (i, j), find the length of the longest Lyndon substring of string sisj.

Input

There are multiple test cases. The first line of input contains an integer T , indicating the number of test cases. For each test case:
The first line contains two integers n and $m(1 \leqslant n, m \leqslant 105)$-- the number of strings and the number of queries.
Each of the next n lines contains a nonempty string si ($1 \leqslant$ si $\leqslant 105$) consisting of lowercase English letters.
Each of the next m lines contains two integers i and $j(1 \leqslant i, j \leqslant n)$ denoting a query.
It is guaranteed that in one test case the sum of all $|\mathrm{s}|$ does not exceed 5×105 and that in all cases the sum of all $|\mathrm{s}|$ does not exceed 5×106.

It is guaranteed that neither the sum of all n nor the sum of all m exceeds 106 .

Output

For each query, output an integer denoting the answer.

Sample Input
1
21
aa
bb
12
Sample Output

\#\# 1010. Turn Off The Light

+ Time limit: 2 seconds
+ Memory limit: 64 megabytes

Problem Description

There are n lights aligned in a row. These lights are numbered 1 to n from left to right. Initially some of the lights are turned on. Chiaki would like to turn off all the lights.
Chiaki starts from the p-th light. Each time she can go left or right (i.e. if Chiaki is at x, then she can go to $x-1$ or $x+1$) and then press the switch of the light in that position (i.e. if the light is turned on before, it will be turned off and vise versa).
For each $\mathrm{p}=1,2, \cdots, \mathrm{n}$, Chiaki would like to know the minimum steps needed to turn off all the lights.

Input

There are multiple test cases. The first line of input is an integer T indicates the number of test cases. For each test case:
The first line contains an integer $n\left(2 \leqslant n \leqslant 10^{\wedge} 6\right)$-- the number of lights.
The second line contains a binary string s where $s i=1$ means the $i-t h$ light is turned on and si=0 means i-th light is turned off.
It is guaranteed that the sum of all n does not exceed 107 .

Output

For each test cases, output $\left(\sum_{i=1}^{|s|} i \times z_{i}\right) \bmod \left(10^{\wedge} 9+7\right)$, where $z i \quad$ is the number of step needed when Chikai starts at the i-th light.

```
Sample Input
```

 3
 3
000
3
111
8
01010101

Sample Output
0
26
432

\#\# 1011. Time Zone

+ Time limit: 1 seconds
+ Memory limit: 32 megabytes

Problem Description

Chiaki often participates in international competitive programming contests. The time zone becomes a big problem.
Given a time in Beijing time (UTC +8), Chiaki would like to know the time in another time zone s .

Input

There are multiple test cases. The first line of input contains an integer T (1 $\leqslant \mathrm{T} \leqslant 10^{\wedge} 5$), indicating the number of test cases. For each test case:
The first line contains two integers $a, b \quad(0 \leqslant a \leqslant 23,0 \leqslant b \leqslant 59)$ and a string s in the format of "UTC+X', , "UTC-X'', "UTC+X. Y'', or "UTC-X. Y' ' $(0 \leqslant X, X . Y \leqslant 14,0 \leqslant Y \leqslant 9)$.

Output

For each test, output the time in the format of hh:mm (24-hour clock).

Sample Input
3
1111 UTC+8
1112 UTC+9
1123 UTC+0

Sample Output
11:11
12:12
03:23

