|ICPC 2015, Tsukuba
Commentary

Mitsuru Kusumoto (ir5)

Problems and numbers of teams solved
S [[a [s [c [o [e [¢ [e [w [1 L4 &
umlllary 42 41 28 21 3 2

Numbers of solved problems and teams

1 v Al 3 B 4 (< 1 . 0 1

16 15 34 2 2

https://twitter.com/icpc2015tsukuba/status/670846511375212544

* Every team solved at least one problem. *happy*

e SITU is so cool.
* Although the solution of problem I is simple, it turned out that the

problem was difficult.

A: Decimal Sequences

e Straightforward. Just search a substring from 0,1,2,....

* Solution has at most ceil(log,,(n+1)) digits, so time complexity is
O(n?logn).

: Solve this problem in time O(nlogn).

B: Squeeze the Cylinders

* Move the cylinders from the leftmost one.

* The position of the i-th cylinder is determined using Pythagorean
theorem.

* Time complexity is O(N?).

C: Sibling Rivalry

e Using matrix multiplication, we can compute a set of vertices reachable
from each vertex after a (resp., b, and c) steps.
* Let’s denote the set of reachable vertices from a vertex v by R(v, a).

* For a vertex v, let f(v) := “the number of minimum required turns to reach
the goal.” If it is impossible to go to the goal from v, f(v) = o=.

* Obviously, f(goal) = 0.

* Also, as you want to minimize # of turns while the bro wants to maximize it,
f(v) = max_{t=a,b,c} min_{w€R(v, a)} f(w) holds.

* |nitialize f(v)=oc and f(goal)=0, and update the value of f(:) by iteration until
converges. Time complexity is O(n*). This can be reduced to O(n3) though.

D: Wall Clocks

At first, compute the range of visible wall for each person. This is a cyclic
interval.

* There are n cyclic intervals, so there are at most 2n candidate positions to
put clocks.

* Determine one candidate position to put a clock, and remove intervals that
contains the clock. After this, the cyclic intervals can be regarded as
standard intervals on a line.

sort the intervals by the leftmost position, and put a clock
at the rightmost position of the leftmost interval among the remaining
intervals.

* Time complexity is O(n?).

E: Bringing Order to Disorder

 Enumerate all the ascending sequences with n digits (e.g., 0011239). There
are at most combin(14+10-1, 10-1)=8 X 10° such sequences.

 Compute sum(-) and prod(-) for each ascending sequence, and compare
their sum/prod with the given sequence.

* |If sum/prod of some ascending sequence s’ is strictly less than that of the given

sequence, all the permutation of s’ is a solution. The number of them is computed by
n!l/(mg!- m !-...- my!), where m, is the number of digitsiin s’.

* If sum/prod of s’ is the same with the given sequence, some of
permutation of s’ are solution and some of them are not.

* The number of such permutation s’ is at most 38. (This is hard to estimate, but
probably you can believe that such number is quite small.)

 If the given is 8274612, the solution should be like 827y***, where 0<y<4 and * is
arbitrary digit. We can count up such sequences in time n-102.

E: Bringing Order to Disorder

NOTE:

* There are other solutions like digit DP or meet-in-the-middle (so
called “F 3£ 5|E” in Japan.)

e But watch out for the time limit. Meet-in-the-middle solution takes
107-log,107 time, which is probably dangerous.

F: Deadlock Detection

* Problem setting may seem a little complicated?

* Binary-search the deadlock-unavoidable time.

* To check if the current state is deadlock-unavoidable or not, try
greedy strategy:

* If one process can acquire all the required resources, give away the required
resources to the process. Iterate this until either all the processes terminate
or fall into dead-lock.

* Time complexity is some kind of O(logn-poly(p,n,t)).

G: Do Geese See God?

* k-th? The shortest? They are complicated, solve from simpler problem.

* First, consider how to compute the shortest length of the palindrome.
 Let f[i][j] := the shortest length of palindrome that is a supersequence of S|i..j].
Then f[i][j] can be computed by DP like edit-distance in O(n2) time.
* If k=1, the solution is computed by backtracking f[-][:].
* If S[i]=S[j], backtrack (i,j)->(i+1,j-1) works.
. Othirwise, lexicographically smaller one between (i,j)->(i,j-1) and (i,j)->(i+1,j)
works.

* If k>1, count up the number of different palindromes for each
substrings SJi..j]. Then the similar strategy works.

* Time complexity is O(n?).

H: Rotating Cutter Bits

 When we fix the workpiece, we would see that the cutter bit moves
along a circle with radius L and center (0, 0) without any rotation.

* Thus, the region that the cutter bit passes is a minkowski-sum of (the
boundary of the cutter bit) and (The boundary of a circle with radius L
and center (0,0)).

* The number of lattice points is up to 4 X 108, which is too large to
check one by one.

e But their x,y-coordinates are small, we can count up the number of remaining
points on each slices.

* Time complexity is O(CoordMax X (n+m)?).

|: Routing a Marathon Race

* There are only 40 vertices.
e Just performing a dfs search suffices with the following pruning:

If we have solution v1->v2-..-5vk and there is an edge (v;, v)),
short-cut of vi->vj would yield a better solution.
This means that, in the best solution, there’s no such short-cut edges.

|: Routing a Marathon Race

This pruning may look inefficient, but this is actually efficient.

Let f(n) := max number of paths with “no-short-cuts” in n-vertex graph.

If the degree of start vertex is d, there’s d choices for the first step. After that, n-d vertices are
available. So,

f(n) < max, d X f(n-d).

From this, we can prove that f(n) < e holds.

(Hint: Use Jensen’s inequality.) ‘

In this problem, f(40) < 2500000 holds.

|: Routing a Marathon Race

e Still, watch out for time limit. Naive 2500000407 is dangerous.
* Use bitwise-operator to drop n factor. This works fast.

e The worst case is as follows.

S A
e
N

J: Post Office Investigation

* A vertex v is called a dominator of a vertex w if every path from the
starting vertex (1) to v passes w.

 See wikipedia. https://en.wikipedia.org/wiki/Dominator (graph theory)
* Dominators can be represented as a dominator tree.

* If we have the dominator tree, we can answer the queries using LCA.

https://en.wikipedia.org/wiki/Dominator_(graph_theory)

J: Post Office Investigation

* There is a linear time algorithm to compute the dominator tree.

* Lengauer, Thomas, and Robert Endre Tarjan. "A fast algorithm for finding dominators in a
flowgraph." ACM Transactions on Programming Languages and Systems (TOPLAS) 1.1 (1979): 121-141.

* ...Butsince there is a special constraint that the size of every SCCis £ 10, we
can solve this problem without such heavy knowledge.

* First, consider the case where given graph is acyclic.

* This case is easy: Compute the dominators in topological order (from root
node).

* Note that dom(v) = {v} , n_{w: (w,v)€EE} dom(w) holds.

J: Post Office Investigation

 What if |SCC|<10?

* Consider each SCCin the topological order.

e Let C={v1,v2,...,vk} be an SCC, and letD =V - C.
* From the property of SCC, (dom(v1)nD),...,(dom(vk)nD) are same. scc
 dom(vi)nC may be different.

e For each i, perform the following: block vertex vi, and perform a BFS from
vertices reachable from start vertex (1). If vertex vj becomes unreachable,
we can see that vi is a dominator of vj.

* From the relation of the dominators, we can construct the dominator tree.
* Time complexity is O(n | MaxSCC|?+qglogn).

K: Min-Max Distance Game

For fixed integer t, let’s transform the game as follows:
* If the distance between result stones is > t, Alice (maximizer) wins.

* Otherwise, Bob (minimizer) wins.

If we can determine who wins in this transformed game,
we can also solve the original game by binary search of t.

K: Min-Max Distance (

Let’s consider a graph G like this:
* Each vertex corresponds to a stone.
* If [x;—x;| <t, there is an edge between stone i and j.

Now, we can consider the game is as follows:
* If there is no edge at the end of the game, Alice (maximizer) wins.

* Otherwise, Bob (minimizer) wins.

K: Min-Max Distance Game

* Alice wants to remove edges in the graph.

* If vertex cover is small enough, Alice wins by removing vertices in the vertex
cover.

* Bob wants to leave edges in the graph.

* |f cligue size is large enough, Bob wins by removing vertices outside of the
clique.

And surprisingly, converse also holds. @ I:I

MVertex Cover

M Clique

K: Min-Max Distance Game

Proof??

K: Min-Max Distance Game

Proof??

The game consists of n-2 turns.
(i) When Alice takes last turn:
Bob takes floor(n/2)-1 turns. If there is a clique with n-(floor(n/2)-1)=1+ceil(n/2) vertices, Bob always wins by taking the other vertices. Otherwise, we
can prove that Alice wins by induction. The case when n=3 is trivial. Assume that this holds when there are less than n stones.

1. When n is even (so it’s Bob’s turn), even if Bob removes any stone, the maximum clique becomes ceil(n/2)=(ceil(n-1)/2). By induction,
Alice wins.

2. Suppose when n is odd (so it’s Alice’s turn.) If clique is < ceil(n/2), Alice can remove any stone. If max clique = ceil(n/2), removing the
center stone (the ceil(n/2)-th stone) would reduce the size of max clique. Thus Alice wins.

(ii) When Bob takes last turn:
Alice takes floor(n/2)-1 turns. In the similar manner, if the vertex cover of the graph is at most floor(n/2)-1, Alice wins by removing all the vertex covers.
Otherwise, we can prove that Bob wins, again, by induction. The case n=3 is trivial. Assume that this holds when there are less than n stones.

1. When n is even (so it’s Alice’s turn), even if Alice removes any stone, the minimum vertex cover becomes at least floor(n/2)-1=floor((n-
1)/2). By induction, Bob wins.

2. Suppose when n is odd (so it’s Bob’s turn.) If min vertex cover > floor(n/2), Bob can remove any stone. Consider when min vertex cover
= floor(n/2). For a connected component C, we refer to the ratio (min vertex cover)/|C| as density. Every connected component contains a path graph.
Sois |C| is even, the density of Cis > 0.5. Since floor(n/2) < 0.5, there should be a component with density < 0.5. In such a component C, the size of
the min vertex cover does not change even if we remove one vertex of the end of the path. Bob should choose such vertex.

K: Min-Max Distance Game

* In general, max cligue and min vertex cover are hard to compute.

* But because graph structure is special, we can compute them in O(n)
time.

* Time complexity is O(nlog(XCoordinateMax)).

