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Summary

https://twitter.com/icpc2015tsukuba/status/670846511375212544

• Every team solved at least one problem. *happy*
• SJTU is so cool.
• Although the solution of problem I is simple, it turned out that the 

problem was difficult.



A: Decimal Sequences

• Straightforward. Just search a substring from 0,1,2,....

• Solution has at most ceil(log10(n+1)) digits, so time complexity is 
O(n2logn).

• Homework(not so hard): Solve this problem in time O(nlogn).



B: Squeeze the Cylinders

• Move the cylinders from the leftmost one.

• The position of the i-th cylinder is determined using Pythagorean 
theorem.

• Time complexity is O(N2).



C: Sibling Rivalry

• Using matrix multiplication, we can compute a set of vertices reachable 
from each vertex after a (resp., b, and c) steps.
• Let’s denote the set of reachable vertices from a vertex v by R(v, a).

• For a vertex v, let f(v) := “the number of minimum required turns to reach 
the goal.” If it is impossible to go to the goal from v, f(v) = ∞.

• Obviously, f(goal) = 0.

• Also, as you want to minimize # of turns while the bro wants to maximize it, 
f(v) = max_{t=a,b,c} min_{w∈R(v, a)} f(w) holds.

• Initialize f(v)=∞ and f(goal)=0, and update the value of f(∙) by iteration until 
converges. Time complexity is O(n4). This can be reduced to O(n3) though.



D: Wall Clocks

• At first, compute the range of visible wall for each person. This is a cyclic 
interval.

• There are n cyclic intervals, so there are at most 2n candidate positions to 
put clocks.

• Determine one candidate position to put a clock, and remove intervals that 
contains the clock. After this, the cyclic intervals can be regarded as 
standard intervals on a line.

• Greedy works: sort the intervals by the leftmost position, and put a clock 
at the rightmost position of the leftmost interval among the remaining 
intervals.

• Time complexity is O(n2).



E: Bringing Order to Disorder

• Enumerate all the ascending sequences with n digits (e.g., 0011239). There 
are at most combin(14+10-1, 10-1)≒8×105 such sequences.

• Compute sum(∙) and prod(∙) for each ascending sequence, and compare 
their sum/prod with the given sequence.
• If sum/prod of some ascending sequence s’ is strictly less than that of the given 

sequence, all the permutation of s’ is a solution. The number of them is computed by 
n!/(m0!∙ m1!∙…∙ m9!), where mi is the number of digits i in s’.

• If sum/prod of s’ is the same with the given sequence, some of 
permutation of s’ are solution and some of them are not.
• The number of such permutation s’ is at most 38. (This is hard to estimate, but 

probably you can believe that such number is quite small.)
• If the given is 8274612, the solution should be like 827y***, where 0≤y<4 and * is 

arbitrary digit. We can count up such sequences in time n∙102.



E: Bringing Order to Disorder

NOTE:

• There are other solutions like digit DP or meet-in-the-middle (so 
called “半分全列挙” in Japan.)

• But watch out for the time limit. Meet-in-the-middle solution takes 
107∙log2107 time, which is probably dangerous.



F: Deadlock Detection

• Problem setting may seem a little complicated?

• Binary-search the deadlock-unavoidable time.

• To check if the current state is deadlock-unavoidable or not, try 
greedy strategy:
• If one process can acquire all the required resources, give away the required 

resources to the process. Iterate this until either all the processes terminate 
or fall into dead-lock.

• Time complexity is some kind of O(logn∙poly(p,r,t)).



G: Do Geese See God?

• k-th? The shortest? They are complicated, solve from simpler problem.

• First, consider how to compute the shortest length of the palindrome.
• Let f[i][j] := the shortest length of palindrome that is a supersequence of S[i..j]. 

Then f[i][j] can be computed by DP like edit-distance in O(n2) time.

• If k=1, the solution is computed by backtracking f[∙][∙].
• If S[i]=S[j], backtrack (i,j)->(i+1,j-1) works.
• Otherwise, lexicographically smaller one between (i,j)->(i,j-1) and (i,j)->(i+1,j) 

works. 

• If k>1, count up the number of different palindromes for each 
substrings S[i..j]. Then the similar strategy works.

• Time complexity is O(n2).



H: Rotating Cutter Bits

• When we fix the workpiece, we would see that the cutter bit moves 
along a circle with radius L and center (0, 0) without any rotation.

• Thus, the region that the cutter bit passes is a minkowski-sum of (the 
boundary of the cutter bit) and (The boundary of a circle with radius L 
and center (0,0)).

• The number of lattice points is up to 4×108, which is too large to 
check one by one.
• But their x,y-coordinates are small, we can count up the number of remaining 

points on each slices.

• Time complexity is O(CoordMax×(n+m)2).



I: Routing a Marathon Race

• There are only 40 vertices.

• Just performing a dfs search suffices with the following pruning:

v1

v2

v3

vk

If we have solution v1→v2→…→vk and there is an edge (vi, vj), 
short-cut of vi→vj would yield a better solution.
This means that, in the best solution, there’s no such short-cut edges.



I: Routing a Marathon Race

This pruning may look inefficient, but this is actually efficient.

Let f(n) := max number of paths with “no-short-cuts” in n-vertex graph.

If the degree of start vertex is d, there’s d choices for the first step. After that, n-d vertices are 
available. So,

f(n) ≤ maxd d×f(n-d).

From this, we can prove that f(n) ≤ en/e holds.
(Hint: Use Jensen’s inequality.)

In this problem, f(40) ≤ 2500000 holds.
v1



I: Routing a Marathon Race

• Still, watch out for time limit. Naive 2500000∙402 is dangerous.

• Use bitwise-operator to drop n factor. This works fast.

• The worst case is as follows.



J: Post Office Investigation

• A vertex v is called a dominator of a vertex w if every path from the 
starting vertex (1) to v passes w.
• See wikipedia. https://en.wikipedia.org/wiki/Dominator_(graph_theory)

• Dominators can be represented as a dominator tree.

• If we have the dominator tree, we can answer the queries using LCA.

https://en.wikipedia.org/wiki/Dominator_(graph_theory)


J: Post Office Investigation

• There is a linear time algorithm to compute the dominator tree.
• Lengauer, Thomas, and Robert Endre Tarjan. "A fast algorithm for finding dominators in a 

flowgraph." ACM Transactions on Programming Languages and Systems (TOPLAS) 1.1 (1979): 121-141.

• ...But since there is a special constraint that the size of every SCC is ≤ 10, we 
can solve this problem without such heavy knowledge.

• First, consider the case where given graph is acyclic.
• This case is easy: Compute the dominators in topological order (from root 

node).

• Note that dom(v) = {v} ∪ ∩_{w: (w,v)∈E} dom(w) holds.



J: Post Office Investigation

• What if |SCC|≤10?

• Consider each SCC in the topological order.

• Let C={v1,v2,...,vk} be an SCC, and let D = V - C.

• From the property of SCC, (dom(v1)∩D),...,(dom(vk)∩D) are same.

• dom(vi)∩C may be different.

• For each i, perform the following: block vertex vi, and perform a BFS from 
vertices reachable from start vertex (1). If vertex vj becomes unreachable, 
we can see that vi is a dominator of vj.

• From the relation of the dominators, we can construct the dominator tree.

• Time complexity is O(n|MaxSCC|2+qlogn).

SCC



K: Min-Max Distance Game

For fixed integer t, let’s transform the game as follows:

• If the distance between result stones is ≥ t, Alice (maximizer) wins.

• Otherwise, Bob (minimizer) wins.

If we can determine who wins in this transformed game,
we can also solve the original game by binary search of t.



K: Min-Max Distance Game

Let’s consider a graph G like this:

• Each vertex corresponds to a stone.

• If |xi – xj| < t, there is an edge between stone i and j.

Now, we can consider the game is as follows:

• If there is no edge at the end of the game, Alice (maximizer) wins.

• Otherwise, Bob (minimizer) wins.



K: Min-Max Distance Game

• Alice wants to remove edges in the graph.
• If vertex cover is small enough, Alice wins by removing vertices in the vertex 

cover.

• Bob wants to leave edges in the graph.
• If clique size is large enough, Bob wins by removing vertices outside of the 

clique.

And surprisingly, converse also holds.

↑Clique
↑Vertex Cover



K: Min-Max Distance Game

Proof??



K: Min-Max Distance Game

Proof??
The game consists of n-2 turns.
(i) When Alice takes last turn:
Bob takes floor(n/2)-1 turns. If there is a clique with n-(floor(n/2)-1)=1+ceil(n/2) vertices, Bob always wins by taking the other vertices. Otherwise, we 
can prove that Alice wins by induction. The case when n=3 is trivial. Assume that this holds when there are less than n stones.

1. When n is even (so it’s Bob’s turn), even if Bob removes any stone, the maximum clique becomes ceil(n/2)=(ceil(n-1)/2). By induction, 
Alice wins.

2. Suppose when n is odd (so it’s Alice’s turn.) If clique is < ceil(n/2), Alice can remove any stone. If max clique = ceil(n/2), removing the 
center stone (the ceil(n/2)-th stone) would reduce the size of max clique. Thus Alice wins.

(ii) When Bob takes last turn:
Alice takes floor(n/2)-1 turns. In the similar manner, if the vertex cover of the graph is at most floor(n/2)-1, Alice wins by removing all the vertex covers. 
Otherwise, we can prove that Bob wins, again, by induction. The case n=3 is trivial. Assume that  this holds when there are less than n stones.

1. When n is even (so it’s Alice’s turn), even if Alice removes any stone, the minimum vertex cover becomes at least floor(n/2)-1=floor((n-
1)/2). By induction, Bob wins.

2. Suppose when n is odd (so it’s Bob’s turn.) If min vertex cover > floor(n/2), Bob can remove any stone. Consider when min vertex cover 
= floor(n/2). For a connected component C, we refer to the ratio (min vertex cover)/|C| as density. Every connected component contains a path graph. 
So is |C| is even, the density of C is ≥ 0.5. Since floor(n/2) < 0.5, there should be a component with density < 0.5. In such a component C, the size of 
the min vertex cover does not change even if we remove one vertex of the end of the path. Bob should choose such vertex.



K: Min-Max Distance Game

• In general, max clique and min vertex cover are hard to compute. 

• But because graph structure is special, we can compute them in O(n) 
time.

• Time complexity is O(nlog(XCoordinateMax)).


