ICPC 2015, Tsukuba Unofficial Commentary

Mitsuru Kusumoto (ir5)

Summary

A	B	C	D	E	F	G	H	I	J	K
42	41	28	21	16	15	14	2	2	3	2

Numbers of solved problems and teams

1	2	3	4	5	6	7	8	9	10	11
1	11	9	3	4	4	6	1	2	0	1

https://twitter.com/icpc2015tsukuba/status/670846511375212544

- Every team solved at least one problem. *happy*
- SJTU is so cool.
- Although the solution of problem I is simple, it turned out that the problem was difficult.

A: Decimal Sequences

- Straightforward. Just search a substring from 0,1,2,....
- Solution has at most ceil($\left.\log _{10}(\mathrm{n}+1)\right)$ digits, so time complexity is $O\left(n^{2} \log n\right)$.
- Homework(not so hard): Solve this problem in time O(nlogn).

B: Squeeze the Cylinders

- Move the cylinders from the leftmost one.
- The position of the i-th cylinder is determined using Pythagorean theorem.
- Time complexity is $\mathrm{O}\left(\mathrm{N}^{2}\right)$.

C: Sibling Rivalry

- Using matrix multiplication, we can compute a set of vertices reachable from each vertex after a (resp., b, and c) steps.
- Let's denote the set of reachable vertices from a vertex v by $R(v, a)$.
- For a vertex v, let $f(v):=$ "the number of minimum required turns to reach the goal." If it is impossible to go to the goal from $v, f(v)=\infty$.
- Obviously, $\mathrm{f}($ goal $)=0$.
- Also, as you want to minimize \# of turns while the bro wants to maximize it, $f(v)=m a x _\{t=a, b, c\}$ min_ $\{w \in R(v, a)\} f(w)$ holds.
- Initialize $f(v)=\infty$ and $f($ goal $)=0$, and update the value of $f(\cdot)$ by iteration until converges. Time complexity is $\mathrm{O}\left(\mathrm{n}^{4}\right)$. This can be reduced to $\mathrm{O}\left(\mathrm{n}^{3}\right)$ though.

D: Wall Clocks

- At first, compute the range of visible wall for each person. This is a cyclic interval.
- There are n cyclic intervals, so there are at most 2 n candidate positions to put clocks.
- Determine one candidate position to put a clock, and remove intervals that contains the clock. After this, the cyclic intervals can be regarded as standard intervals on a line.
- Greedy works: sort the intervals by the leftmost position, and put a clock at the rightmost position of the leftmost interval among the remaining intervals.
- Time complexity is $\mathrm{O}\left(\mathrm{n}^{2}\right)$.

E: Bringing Order to Disorder

- Enumerate all the ascending sequences with n digits (e.g., 0011239). There are at most combin $(14+10-1,10-1) \fallingdotseq 8 \times 10^{5}$ such sequences.
- Compute sum(•) and prod(•) for each ascending sequence, and compare their sum/prod with the given sequence.
- If sum/prod of some ascending sequence s' is strictly less than that of the given sequence, all the permutation of s^{\prime} is a solution. The number of them is computed by $n!/\left(m_{0}!\cdot m_{1}!\cdot \ldots \cdot m_{9}!\right)$, where m_{i} is the number of digits i in s^{\prime}.
- If sum/prod of s^{\prime} is the same with the given sequence, some of permutation of s^{\prime} are solution and some of them are not.
- The number of such permutation s^{\prime} is at most 38 . (This is hard to estimate, but probably you can believe that such number is quite small.)
- If the given is 8274612 , the solution should be like $827 y^{* * *}$, where $0 \leq y<4$ and $*$ is arbitrary digit. We can count up such sequences in time $\mathrm{n} \cdot 10^{2}$.

E：Bringing Order to Disorder

NOTE：

－There are other solutions like digit DP or meet－in－the－middle（so called＂半分全列挙＂in Japan．）
－But watch out for the time limit．Meet－in－the－middle solution takes $10^{7} \cdot \log _{2} 10^{7}$ time，which is probably dangerous．

F: Deadlock Detection

- Problem setting may seem a little complicated?
- Binary-search the deadlock-unavoidable time.
- To check if the current state is deadlock-unavoidable or not, try greedy strategy:
- If one process can acquire all the required resources, give away the required resources to the process. Iterate this until either all the processes terminate or fall into dead-lock.
- Time complexity is some kind of $O(\operatorname{logn} \cdot p o l y(p, r, t))$.

G: Do Geese See God?

- k-th? The shortest? They are complicated, solve from simpler problem.
- First, consider how to compute the shortest length of the palindrome.
- Let $\mathrm{f}[\mathrm{i}][\mathrm{j}]:=$ the shortest length of palindrome that is a supersequence of $\mathrm{S}[\mathrm{i} . . \mathrm{j}]$. Then $f[i][j]$ can be computed by DP like edit-distance in $O(n 2)$ time.
- If $\mathrm{k}=1$, the solution is computed by backtracking $\mathrm{f}[\cdot][\mathrm{F}]$.
- If $\mathrm{S}[\mathrm{i}]=\mathrm{S}[\mathrm{j}]$, backtrack (i, j)->($\mathrm{i}+1, \mathrm{j}-1$) works.
- Otherwise, lexicographically smaller one between (i, j)->($\mathrm{i}, \mathrm{j}-1$) and (i, j)->($\mathrm{i}+1, \mathrm{j})$ works.
- If $k>1$, count up the number of different palindromes for each substrings $\mathrm{S}[\mathrm{i} . . \mathrm{j}]$. Then the similar strategy works.
- Time complexity is $\mathrm{O}\left(\mathrm{n}^{2}\right)$.

H: Rotating Cutter Bits

- When we fix the workpiece, we would see that the cutter bit moves along a circle with radius L and center $(0,0)$ without any rotation.
- Thus, the region that the cutter bit passes is a minkowski-sum of (the boundary of the cutter bit) and (The boundary of a circle with radius L and center (0,0)).
- The number of lattice points is up to 4×10^{8}, which is too large to check one by one.
- But their x, y-coordinates are small, we can count up the number of remaining points on each slices.
- Time complexity is $\mathrm{O}\left(\operatorname{CoordMax} \times(\mathrm{n}+\mathrm{m})^{2}\right)$.

I: Routing a Marathon Race

- There are only 40 vertices.
- Just performing a dfs search suffices with the following pruning:

If we have solution $\mathrm{v} 1 \rightarrow \mathrm{v} 2 \rightarrow \ldots \rightarrow \mathrm{vk}$ and there is an edge $\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)$, short-cut of vi \rightarrow vj would yield a better solution.
This means that, in the best solution, there's no such short-cut edges.

I: Routing a Marathon Race

This pruning may look inefficient, but this is actually efficient.

Let $\mathrm{f}(\mathrm{n}):=$ max number of paths with "no-short-cuts" in n -vertex graph.
If the degree of start vertex is d, there's d choices for the first step. After that, n - d vertices are available. So,

$$
f(n) \leq \max _{d} d \times f(n-d) .
$$

From this, we can prove that $f(n) \leq e^{n / e}$ holds. (Hint: Use Jensen's inequality.)

In this problem, $\mathrm{f}(40) \leq 2500000$ holds.

I: Routing a Marathon Race

- Still, watch out for time limit. Naive $2500000 \cdot 40^{2}$ is dangerous.
- Use bitwise-operator to drop n factor. This works fast.
- The worst case is as follows.

J: Post Office Investigation

- A vertex v is called a dominator of a vertex w if every path from the starting vertex (1) to v passes w.
- See wikipedia. https://en.wikipedia.org/wiki/Dominator (graph theory)
- Dominators can be represented as a dominator tree.
- If we have the dominator tree, we can answer the queries using LCA.

J: Post Office Investigation

- There is a linear time algorithm to compute the dominator tree.
- Lengauer, Thomas, and Robert Endre Tarjan. "A fast algorithm for finding dominators in a flowgraph." ACM Transactions on Programming Languages and Systems (TOPLAS) 1.1 (1979): 121-141.
- ...But since there is a special constraint that the size of every SCC is ≤ 10, we can solve this problem without such heavy knowledge.
- First, consider the case where given graph is acyclic.
- This case is easy: Compute the dominators in topological order (from root node).
- Note that dom $(v)=\{v\}_{u} \cap_{-}\{w:(w, v) \in E\}$ dom(w) holds.

J: Post Office Investigation

- What if $|S C C| \leq 10$?
- Consider each SCC in the topological order.
- Let $\mathrm{C}=\{\mathrm{v} 1, \mathrm{v} 2, \ldots, \mathrm{vk}\}$ be an SCC , and let $\mathrm{D}=\mathrm{V}-\mathrm{C}$.
- From the property of SCC, (dom(v1) $\cap \mathrm{D}), \ldots,(\operatorname{dom}(\mathrm{vk}) \cap \mathrm{D})$ are same.
- dom(vi) $\cap C$ may be different.
- For each i, perform the following: block vertex vi, and perform a BFS from vertices reachable from start vertex (1). If vertex vj becomes unreachable, we can see that $v i$ is a dominator of $v j$.
- From the relation of the dominators, we can construct the dominator tree.
- Time complexity is $\mathrm{O}\left(\mathrm{n}|\mathrm{MaxSCC}|^{2}+\mathrm{qlogn}\right)$.

K: Min-Max Distance Game

For fixed integer t , let's transform the game as follows:

- If the distance between result stones is $\geq \mathrm{t}$, Alice (maximizer) wins.
- Otherwise, Bob (minimizer) wins.

If we can determine who wins in this transformed game, we can also solve the original game by binary search of t.

K: Min-Max Distance (

- Each vertex corresponds to a stone.
- If $\left|x_{i}-x_{j}\right|<t$, there is an edge between stone i and j.

Now, we can consider the game is as follows:

- If there is no edge at the end of the game, Alice (maximizer) wins.
- Otherwise, Bob (minimizer) wins.

K: Min-Max Distance Game

- Alice wants to remove edges in the graph.
- If vertex cover is small enough, Alice wins by removing vertices in the vertex cover.
- Bob wants to leave edges in the graph.
- If clique size is large enough, Bob wins by removing vertices outside of the clique.

And surprisingly, converse also holds.

\uparrow Vertex Cover

K: Min-Max Distance Game

Proof??

K: Min-Max Distance Game

Proof??

The game consists of $\mathrm{n}-2$ turns.
(i) When Alice takes last turn:

Bob takes floor($\mathrm{n} / 2$)-1 turns. If there is a clique with n -(floor($\mathrm{n} / 2)-1)=1+$ ceil $(\mathrm{n} / 2)$ vertices, Bob always wins by taking the other vertices. Otherwise, we can prove that Alice wins by induction. The case when $n=3$ is trivial. Assume that this holds when there are less than n stones.

1. When n is even (so it's Bob's turn), even if Bob removes any stone, the maximum clique becomes ceil($n / 2$) $=($ ceil $(n-1) / 2)$. By induction,

Alice wins.
2. Suppose when n is odd (so it's Alice's turn.) If clique is < ceil($n / 2$), Alice can remove any stone. If max clique $=\operatorname{ceil}(\mathrm{n} / 2)$, removing the center stone (the ceil(n/2)-th stone) would reduce the size of max clique. Thus Alice wins.
(ii) When Bob takes last turn:

Alice takes floor($\mathrm{n} / 2$)-1 turns. In the similar manner, if the vertex cover of the graph is at most floor($\mathrm{n} / 2$) -1 , Alice wins by removing all the vertex covers. Otherwise, we can prove that Bob wins, again, by induction. The case $n=3$ is trivial. Assume that this holds when there are less than n stones.

1. When n is even (so it's Alice's turn), even if Alice removes any stone, the minimum vertex cover becomes at least floor($\mathrm{n} / 2$)- $-1=$ floor((n 1)/2). By induction, Bob wins.
2. Suppose when n is odd (so it's Bob's turn.) If min vertex cover $>$ floor($n / 2$), Bob can remove any stone. Consider when min vertex cover $=$ floor $(\mathrm{n} / 2$). For a connected component C , we refer to the ratio (min vertex cover)/ $|\mathrm{C}|$ as density. Every connected component contains a path graph. So is $|C|$ is even, the density of C is ≥ 0.5. Since floor $(n / 2)<0.5$, there should be a component with density <0.5. In such a component C, the size of the min vertex cover does not change even if we remove one vertex of the end of the path. Bob should choose such vertex.

K: Min-Max Distance Game

- In general, max clique and min vertex cover are hard to compute.
- But because graph structure is special, we can compute them in O(n) time.
- Time complexity is $\mathrm{O}(\mathrm{nlog}(\mathrm{XCoordinateMax}))$.

