
2017 ECNA Regional Contest
ECNA 2017

October 28

Problems
A Abstract Art
B Craters
C DRM Messages
D Game of Throwns
E Is-A? Has-A? Who Knowz-A?
F Keeping On Track
G A Question of Ingestion
H Sheba’s Amoebas
I Twenty Four, Again
J Workout for a Dumbbell

Do not open before the contest has started.

ACM International Collegiate Programming Contest
2017 East Central Regional Contest

Grand Valley State University
University of Cincinnati
University of Windsor

Youngstown State University
October 28, 2017

Sponsored by IBM

Rules:

1. There are ten problems to be completed in 5 hours.

2. All questions require you to read the test data from standard input and write results to standard output.
You cannot use files for input or output. Additional input and output specifications can be found in the
General Information Sheet.

3. When displaying results, follow the format in the Sample Output for each problem. Unless otherwise
stated, all whitespace in the Sample Output consists of exactly one blank character.

4. The allowed programming languages are C, C++, Java, Python 2 and Python 3.

5. All programs will be re-compiled prior to testing with the judges’ data.

6. Non-standard libraries cannot be used in your solutions. The Standard Template Library (STL) and
C++ string libraries are allowed. The standard Java API is available, except for those packages that are
deemed dangerous by contestant officials (e.g., that might generate a security violation).

7. Programs will be run against multiple input files, each file containing a single test case.

8. Programming style is not considered in this contest. You are free to code in whatever style you prefer.
Documentation is not required.

9. All communication with the judges will be handled by the Kattis environment.

10. Judges’ decisions are to be considered final. No cheating will be tolerated.

ECNA 2017 2

Problem A
Abstract Art

Arty has been an abstract artist since childhood, and his works have taken on many forms. His latest (and
most pricey) creations are lovingly referred to as Abstract Art within the abstract art community (they’re
not the most original bunch when it comes to loving nicknames). Here’s an example of one of Arty’s recent
works:

Figure A.1: An example of Arty’s art.

As you can see, Abstract Art is created by painting (possibly overlapping) polygons. When Arty paints one
of his designs he always paints each polygon completely before moving on to the next one.

The price of individual pieces of Arty’s Abstract Art varies greatly based on their aesthetic appeal, but
collectors demand two pieces of information about each painting:

1. the total amount of paint used, and

2. the total amount of canvas covered.

Note that the first value will be larger than the second whenever there is overlap between two or more
polygons. Both of these values can be calculated from a list containing the vertices of all the polygons used
in the painting, but Arty can’t waste his time on such plebeian pursuits — he has great art to produce! I guess
it’s left up to you.

Input

The first line of input contains a single integer n (1 ≤ n ≤ 100) representing the number of polygons to be
painted. Following this are n lines each describing a painted polygon. Each polygon description starts with
an integer m (3 ≤ m ≤ 20) indicating the number of sides in the polygon, followed by m pairs of integers x
y (0 ≤ x, y ≤ 1 000) specifying the coordinates of the vertices of the polygon in consecutive order. Polygons
may be concave but no polygon will cross itself. No point on the canvas will be touched by more than two
polygon border segments.

ECNA 2017 Problem A: Abstract Art 1

Output

Display both the total amount of paint used and the amount of canvas covered. Your answers must have a
relative or absolute error of at most 10−6.

Sample Input 1

3
8 7 10 7 17 10 20 17 20 20 17 20 10 17 7 10 7
4 0 0 0 8 8 8 8 0
4 3 3 3 13 13 13 13 3

Sample Output 1

315.00000000 258.50000000

ECNA 2017 Problem A: Abstract Art 2

Problem B
Craters

General Warren Pierce has a bit of a problem. He’s in charge of a new type of drone-delivered explosive
and they’ve been testing it out in the Nevada desert, far enough from any population center to avoid civilian
casualties and prying eyes. Unfortunately word has gotten out about these experiments and now there’s the
possibility of careless on-lookers, nefarious spies, or even worse — nosy reporters! To keep them away from
the testing area, Warren wants to erect a single fence surrounding all of the circular craters produced by the
explosions. However, due to various funding cuts (to support tax cuts for the you-know-who) he can’t just put
up miles and miles of fencing like in the good old days. He figures that if he can keep people at least 10 yards
away from any crater he’ll be okay, but he’s unsure of how much fencing to request. Given the locations
and sizes of the craters, can you help the General determine the minimum amount of fencing he needs? An
example with three craters (specified in Sample Input 1) is shown below.

Figure B.1: Three craters with a fence around them.

Input

The first line of input contains a single positive integer n (n ≤ 200), the number of craters. After this are n
lines specifying the location and radius of each crater. Each of these lines contains 3 integers x y r, where x
and y specify the location of a crater (|x, y| ≤ 10 000) and r is its radius (0 < r ≤ 5 000). All units are in
yards.

Output

Display the minimum amount of fencing (in yards) needed to cordon off the craters, with an absolute or
relative error of at most 10−6.

Sample Input 1 Sample Output 1

3
0 0 100
-60 200 40
350 50 150

1715.91229929

ECNA 2017 Problem B: Craters 3

This page is intentionally left blank.

Problem C
DRM Messages

DRM Encryption is a new kind of encryption. Given an encrypted string (which we’ll call a DRM message),
the decryption process involves three steps: Divide, Rotate and Merge. This process is described in the
following example with the DRM message “EWPGAJRB”:

Divide – First, divide the message in half to “EWPG” and “AJRB”.

Rotate – For each half, calculate its rotation value by summing up the values of each character (A = 0,B =
1, . . .Z = 25). The rotation value of “EWPG” is 4 + 22 + 15 + 6 = 47. Rotate each character
in “EWPG” 47 positions forward (wrapping from Z to A when necessary) to obtain the new string
“ZRKB”. Following the same process on “AJRB” results in “BKSC”.

Merge – The last step is to combine these new strings (“ZRKB” and “BKSC”) by rotating each character in
the first string by the value of the corresponding character in the second string. For the first position,
rotating ‘Z’ by ‘B’ means moving it forward 1 character, which wraps it around to ‘A’. Continuing this
process for every character results in the final decrypted message, “ABCD”.

Input

The input contains a single DRM message to be decrypted. All characters in the string are uppercase letters
and the string’s length is even and ≤ 15 000.

Output

Display the decrypted DRM message.

Sample Input 1 Sample Output 1

EWPGAJRB ABCD

Sample Input 2 Sample Output 2

UEQBJPJCBUDGBNKCAHXCVERXUCVK ACMECNACONTEST

ECNA 2017 Problem C: DRM Messages 5

This page is intentionally left blank.

Problem D
Game of Throwns

Daenerys frequently invents games to help teach her second grade Computer Science class about various
aspects of the discipline. For this week’s lesson she has the children form a circle and (carefully) throw
around a petrified dragon egg.

The n children are numbered from 0 to n− 1 (it is a Computer Science class after all) clockwise around the
circle. Child 0 always starts with the egg. Daenerys will call out one of two things:

1. a number t, indicating that the egg is to be thrown to the child who is t positions clockwise from the
current egg holder, wrapping around if necessary. If t is negative, then the throw is to the counter-
clockwise direction.

2. the phrase undo m, indicating that the last m throws should be undone. Note that undo commands
never undo other undo commands; they just undo commands described in item 1 above.

For example, if there are 5 children, and the teacher calls out the four throw commands 8 -2 3 undo 2,
the throws will start from child 0 to child 3, then from child 3 to child 1, then from child 1 to child 4. After
this, the undo 2 instructions will result in the egg being thrown back from child 4 to child 1 and then from
child 1 back to child 3. If Daenerys calls out 0 (or n,−n, 2n,−2n, etc.) then the child with the egg simply
throws it straight up in the air and (carefully) catches it again.

Daenerys would like a little program that determines where the egg should end up if her commands are
executed correctly. Don’t ask what happens to the children if this isn’t the case.

Input

Input consists of two lines. The first line contains two positive integers n k (1 ≤ n ≤ 30, 1 ≤ k ≤ 100)
indicating the number of students and how many throw commands Daenerys calls out, respectively. The
following line contains the k throw commands. Each command is either an integer p (−10 000 ≤ p ≤ 10 000)
indicating how many positions to throw the egg clockwise or undo m (m ≥ 1) indicating that the last m
throws should be undone. Daenerys never has the kids undo beyond the start of the game.

Output

Display the number of the child with the egg at the end of the game.

Sample Input 1 Sample Output 1

5 4
8 -2 3 undo 2

3

ECNA 2017 Problem D: Game of Throwns 7

Sample Input 2 Sample Output 2

5 10
7 -3 undo 1 4 3 -9 5 undo 2 undo 1 6

2

ECNA 2017 Problem D: Game of Throwns 8

Problem E
Is-A? Has-A? Who Knowz-A?

Two familiar concepts in object oriented programming are the is-a and has-a relationships. Given two classes
A and B, we say that A is-a B if A is a subclass of B; we say A has-a B if one of the fields of A is of type B.
For example, we could imagine an object-oriented language (call it ICPC++) with code like that in Figure
E.1, where the class Day is-a Time, the class Appointment is both a DateBook and a Reminder, and
class Appointment has-a Day.

class Day extends Time class Appointment extends Datebook, Reminder
{ {

... private Day date;
} ...

}

Figure E.1: Two ICPC++ classes.

These two relationships are transitive. For example if A is-a B and B is-a C then it follows that A is-a C.
This holds as well if we change all the is-a’s in the last sentence to has-a’s. It also works with combinations
of is-a’s and has-a’s: in the example above, Appointment has-a Time, since it has-a Day and Day is-a
Time. Similarly, if class DateBook has-a Year then Appointment has-a Year, since Appointment
is-a DateBook.

In this problem you will be given a set of is-a and has-a relationships and a set of queries of the form A
is/has-a B. You must determine if each query is true or false.

Input:

Input starts with two integers n and m, (1 ≤ n,m ≤ 10 000), where n specifies the number of given is-a
and has-a relationships and m specifies the number of queries. The next n lines each contain one given
relationship in the form c1 r c2 where c1 and c2 are single-word class names, and r is either the string “is-a”
or “has-a”. Following this are m queries, one per line, using the same format. There will be at most 500
distinct class names in the n+m lines, and all class names in the last m lines will appear at least once in the
initial n lines. All is-a and has-a relationships between the given classes can be deduced from the n given
relationships. Is-a relationships can not be circular (apart from the trivial identity “x is-a x”).

Output

For each query, display the query number (starting at one) and whether the query is true or false.

ECNA 2017 Problem E: Is-A? Has-A? Who Knowz-A? 9

Sample Input 1 Sample Output 1

5 5
Day is-a Time
Appointment is-a Datebook
Appointment is-a Reminder
Appointment has-a Day
Datebook has-a Year
Day is-a Time
Time is-a Day
Appointment has-a Time
Appointment has-a Year
Day is-a Day

Query 1: true
Query 2: false
Query 3: true
Query 4: true
Query 5: true

ECNA 2017 Problem E: Is-A? Has-A? Who Knowz-A? 10

Problem F
Keeping On Track

Acmar and Ibmar are at war! You are in charge of a rail network that transports important supplies throughout
the great state of Acmar during this delicate time. The rail system is made up of a set of rail lines which meet
at various junction points. While there is no limit to the number of rail lines that can meet at a junction, the
network is set up so that there is only one path between any two junctions. You’ve tried to argue for some
redundancy in the system, i.e., extra rail lines so that there are two or more paths connecting some junctions,
but it’s wartime and budgets are tight.

However, this may soon change as you’ve just been given some terrible news from double agents working in
Ibmar: within the next month enemy spies plan to blow up one of the junctions! Unfortunately, the exact
junction is not known, but knowing your enemy well you are certain that they will undoubtedly strike the
critical junction, specifically the junction whose removal disconnects the most pairs of other remaining
junctions in the system. You don’t have much time to act, so the most you can do is add one new line
connecting two currently unconnected junctions, thereby reducing the number of disconnected pairs after the
critical junction has been destroyed. Your job is to determine how to make the number of disconnected pairs
as small as possible by adding in the best possible rail line.

Input

Input starts with a line containing an integer n (2 ≤ n ≤ 10 000) indicating the number of rail lines in the
system. Following that are n lines of the form i1 i2 indicating that a rail line connects junctions i1 and i2.
Junctions are numbered consecutively starting at 0. All rail lines are two-way and no rail line appears more
than once in the input. There is exactly one path between any two junction points given in the input.

Output

Display two values n1 and n2, where n1 is the number of pairs of junctions which will be disconnected when
the enemy destroys the critical junction, and n2 is the number of pairs of junctions still disconnected after
you add in the best possible rail line. There will never be more than one critical junction.

Sample Input 1 Sample Output 1

6
0 1
1 2
2 3
2 4
4 5
4 6

11 5

ECNA 2017 Problem F: Keeping On Track 11

Sample Input 2 Sample Output 2

2
2 1
0 1

1 0

ECNA 2017 Problem F: Keeping On Track 12

Problem G
A Question of Ingestion

Stan Ford is a typical college graduate student, meaning that one of the most important things on his mind
is where his next meal will be. Fortune has smiled on him as he’s been invited to a multi-course barbecue
put on by some of the corporate sponsors of his research team, where each course lasts exactly one hour.
Stan is a bit of an analytical type and has determined that his eating pattern over a set of consecutive hours
is always very consistent. In the first hour, he can eat up to m calories (where m depends on factors such
as stress, bio-rhythms, position of the planets, etc.), but that amount goes down by a factor of two-thirds
each consecutive hour afterwards (always truncating in cases of fractions of a calorie). However, if he stops
eating for one hour, the next hour he can eat at the same rate as he did before he stopped. So, for example,
if m = 900 and he ate for five consecutive hours, the most he could eat each of those hours would be 900,
600, 400, 266 and 177 calories, respectively. If, however, he didn’t eat in the third hour, he could then eat
900, 600, 0, 600 and 400 calories in each of those hours. Furthermore, if Stan can refrain from eating for two
hours, then the hour after that he’s capable of eating m calories again. In the example above, if Stan didn’t
eat during the third and fourth hours, then he could consume 900, 600, 0, 0 and 900 calories.

Stan is waiting to hear what will be served each hour of the barbecue as he realizes that the menu will
determine when and how often he should refrain from eating. For example, if the barbecue lasts 5 hours and
the courses served each hour have calories 800, 700, 400, 300, 200 then the best strategy when m = 900 is
to eat every hour for a total consumption of 800 + 600 + 400 + 266 + 177 = 2 243 calories. If however, the
third course is reduced from 400 calories to 40 calories (some low-calorie celery dish), then the best strategy
is to not eat during the third hour — this results in a total consumption of 1 900 calories.

The prospect of all this upcoming food has got Stan so frazzled he can’t think straight. Given the number of
courses and the number of calories for each course, can you determine the maximum amount of calories Stan
can eat?

Input

Input starts with a line containing two positive integers n m (n ≤ 100,m ≤ 20 000) indicating the number
of courses and the number of calories Stan can eat in the first hour, respectively. The next line contains n
positive integers indicating the number of calories for each course.

Output

Display the maximum number of calories Stan can consume.

Sample Input 1 Sample Output 1

5 900
800 700 400 300 200

2243

ECNA 2017 Problem G: A Question of Ingestion 13

Sample Input 2 Sample Output 2

5 900
800 700 40 300 200

1900

ECNA 2017 Problem G: A Question of Ingestion 14

Problem H
Sheba’s Amoebas

After a successful Kickstarter campaign, Sheba Arriba has raised enough money for her mail-order biology
supply company. “Sheba’s Amoebas” can ship Petri dishes already populated with a colony of those tiny
one-celled organisms. However, Sheba needs to be able to verify the number of amoebas her company sends
out. For each dish she has a black-and-white image that has been pre-processed to show each amoeba as a
simple closed loop of black pixels. (A loop is a minimal set of black pixels in which each pixel is adjacent to
exactly two other pixels in the set; adjacent means sharing an edge or corner of a pixel.) All black pixels in
the image belong to some loop.

Sheba would like you to write a program that counts the closed loops in a rectangular array of black and white
pixels. No two closed loops in the image touch or overlap. One particularly nasty species of cannibalistic
amoeba is known to surround and engulf its neighbors; consequently there may be amoebas within amoebas.
For instance, each of the images in Figure H.1 contains four amoebas.

Figure H.1: Two Petri dishes, each with four amoebas.

Input

The first line of input contains two integers m and n, (1 ≤ m,n ≤ 100). This is followed by m lines, each
containing n characters. A ‘#’ denotes a black pixel, a ‘.’ denotes a white pixel. For every black pixel,
exactly two of its eight neighbors are also black.

Output

Display a single integer representing the number of loops in the input.

ECNA 2017 Problem H: Sheba’s Amoebas 15

Sample Input 1 Sample Output 1

12 12
.##########.
#..........#
#..#...##..#
#.##..#..#.#
#......#.#.#
#....#..#..#
#...#.#....#
#..#...#...#
.#..#.#....#
#....#.....#
#.........#.
.#########..

4

Sample Input 2 Sample Output 2

12 10
.#####....
#.....#...
#..#..#...
#.#.#.#...
#..#..#...
.#...#....
..###.....
......#...
.##..#.#..
#..#..#...
.##.......
..........

4

ECNA 2017 Problem H: Sheba’s Amoebas 16

Problem I
Twenty Four, Again

Yes, we know . . . we’ve used Challenge 24 before for contest problems. In case you’ve never heard of
Challenge 24 (or have a very short memory) the object of the game is to take 4 given numbers (the base
values) and determine if there is a way to produce the value 24 from them using the four basic arithmetic
operations (and parentheses if needed). For example, given the four base values 3 5 5 2, you can produce
24 in many ways. Two of them are: 5*5-3+2 and (3+5)*(5-2). Recall that multiplication and division
have precedence over addition and subtraction, and that equal-precedence operators are evaluated left-to-right.

This is all very familiar to most of you, but what you probably don’t know is that you can grade the quality
of the expressions used to produce 24. In fact, we’re sure you don’t know this since we’ve just made it up.
Here’s how it works: A perfect grade for an expression is 0. Each use of parentheses adds one point to the
grade. Furthermore, each inversion (that is, a swap of two adjacent values) of the original ordering of the four
base values adds two points. The first expression above has a grade of 4, since two inversions are used to
move the 3 to the third position. The second expression has a better grade of 2 since it uses no inversions but
two sets of parentheses. As a further example, the initial set of four base values 3 6 2 3 could produce
an expression of grade 3 — namely (3+6+3)*2 — but it also has a perfect grade 0 expression — namely
3*6+2*3. Needless to say, the lower the grade the “better” the expression.

Two additional rules we’ll use: 1) you cannot use unary minus in any expression, so you can’t take the base
values 3 5 5 2 and produce the expression -3+5*5+2, and 2) division can only be used if the result is an
integer, so you can’t take the base values 2 3 4 9 and produce the expression 2/3*4*9.

Given a sequence of base values, determine the lowest graded expression resulting in the value 24. And by
the way, the initial set of base values 3 5 5 2 has a grade 1 expression — can you find it?

Input

Input consists of a single line containing 4 base values. All base values are between 1 and 100, inclusive.

Output

Display the lowest grade possible using the sequence of base values. If it is not possible to produce 24,
display impossible.

Sample Input 1 Sample Output 1

3 5 5 2 1

Sample Input 2 Sample Output 2

1 1 1 1 impossible

ECNA 2017 Problem I: Twenty Four, Again 17

This page is intentionally left blank.

Problem J
Workout for a Dumbbell

Jim Ratt has just joined a local fitness center. He’s especially excited about a sequence of 10 machines that
he cycles through three times for his workout. He has a fixed time which he spends on each machine, as well
as a fixed recovery time after using a machine. Jim’s not the brightest guy in the world, but in the absence of
anything else even he would easily be able to calculate how long his workout would take.

But of course, Jim isn’t the only person who uses the fitness center and wouldn’t you know it but when Jim
shows up there are always 10 other people there, each using one of the ten machines exclusively. Like Jim,
each person has a fixed time they use on their machine as well as a fixed recovery time. This will sometimes
cause Jim to have to wait for a particular machine, and Jim’s usage sometimes results in the other people
having to wait as well (though if both Jim and another person want to start using a machine at the same time,
Jim is polite enough to let the other person go first). Jim has gone to the center often enough that he has a
good idea what everyone’s usage and recovery times are, but he has trouble determining how long it will take
him to perform his workout. That’s where you are going to flex your programming muscles.

Input

Input starts with a line containing twenty integers; the first two give Jim’s usage and recovery time for
machine 1, the next two give Jim’s usage and recovery time for machine 2, etc. The next line contains 3
integers u r t; the first two values are the usage and recovery times for the person who is using machine 1,
and t is the time when he/she first starts using the machine. The next 9 lines specify similar information for
machines 2 through 10. All usage and recovery times are positive and ≤ 5 000 000 and all start times t satisfy
|t| ≤ 5 000 000. You should assume that Jim is ready to use machine 1 at time 0.

Output

Display the time when Jim has finished his workout, i.e., the moment when he has finished his usage time on
machine 10 for the third time (don’t count the last recovery time for that machine).

Sample Input 1 Sample Output 1

5 5 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 2 1
8 3 0
1 1 0
1 1 0
1 1 0
1 1 0
1 1 0
1 1 0
1 1 0
1 1 0

100

ECNA 2017 Problem J: Workout for a Dumbbell 19

This page is intentionally left blank.

