
第 3场-eddy1021

牛客暑期ACM多校训练营

Main Idea: Dynamic Programming(Knapsack DP), backtracking

A-PACM Team

Main Idea: Dynamic Programming(Knapsack DP), backtracking

DP state: dp[i][p][a][c][m]:=most knowledge points from some subset of
first i groups with no more than p physics experts, a algorithm experts, etc.

DP Transition: dp[i][p][a][c][m]=
max(dp[i][p][a][c][m], dp[i-1][p-p_i][a-a_i][c-c_i][m-m_i]+g_i)

Overall Time complexity: O((36)^5)
Overall Space complexity: O((36)^5)

May need to be careful about the memory limit
(Using short or char)

A-PACM Team(cont.)

It can’t be reduced to dp[P][A][C][M] and update in place, which will make
backtracking broken.

A-PACM Team(cont.)

Alternative solution: Meet in middle

Brute force all possible combination of first and last half of the groups,
then try to combine the result.

Overall Time complexity: O(18*2^{18} + {36}^4)
Overall Space complexity: O(2^18 + 36^4)

The main challenge is that the constant factor in space complexity would
be too large since we need to reconstruct a solution.

A-PACM Team(cont.)

Main Idea: Math, Dynamic Programming, Tree traversal, Case analysis

B-Expected Number of Nodes

Main Idea: Math, Dynamic Programming, Tree traversal, Case analysis

The expected number of nodes can be separated as sum of probability of
each node remained after contracting.

Thus, we turn the problem into computing the probability of each node
remained.

B-Expected Number of Nodes

Main Idea: Math, Dynamic Programming, Tree traversal, Case analysis

Considering following cases:
● A node with degree<=2: It will remain after contracting if and only if

it’s chosen.
● A node with degree>2: It won’t remain after contracting if and only if

all the K chosen nodes are in one or two subtree of it(when
considering this node as root).

B-Expected Number of Nodes

Main Idea: Math, Dynamic Programming, Tree traversal, Case analysis

Considering following cases:
● A node with degree<=2: The probability it will remain will be (N-1, K-

1)/(N, K).
● A node with degree>2: Let the sizes of its subtrees(considering it as

root) be [s_1, s_2, …, s_m].
The probabilit it will remain will be

1-\sum_{i<j}(s_i+s_j, k)+(m-2) \sum_i (s_i, k)

B-Expected Number of Nodes

Main Idea: Math, Dynamic Programming, Tree traversal, Case analysis

Then, for each K, we can compute the first cases easily.

For second case, we just need to preprocess the parameter of each (*, k)
terms. Then, we can compute the answer for each k in O(N).

Overall Time complexity: O(N^2)
Overall Space complexity: O(N)

B-Expected Number of Nodes

Main Idea: Data structure, Implementation

C-Shuffle Cards

Main Idea: Data structure, Implementation

We need to keep cutting out some consecutive number and put them in
front of the rest list.

Since we need to quick find (p_i)-th element, it would be too slow with
linked-list.

C-Shuffle Cards(cont.)

Main Idea: Data structure, Implementation

The solution is just maintaining the list with treap(or any other balanced
binary tree).

Overall Time complexity: O((N+M) \lg N)
Overall Space complexity: O(N)

C-Shuffle Cards(cont.)

Main Idea: FFT, NTT

D-Encrypted String Matching

Main Idea: FFT, NTT

Since decryption is done in normal way, it’s equivalent to compare a
substring decrypted in broken way and the given string decrypted in
normal way.
That is, comparing E(T’) and E(S).

Thus, we can decypt S in normal way directly. Then, it’s equivalent to ask
whether for each character of E(T’) and E(S), the ascii code differs by at
most one.

D-Encrypted String Matching

Main Idea: FFT, NTT

Let E(T’) be X, E(S) be Y, where |X|=|Y|.

It’s equivalent to check whether:

\sum_{i=0..|X|-1} (X_i-Y_i)^2 * ((X_i-Y_i)-1)^2 = 0

After expansion, the above formula can be represented as:
+1 * (X \dot X \dot X \dot X)+
- 4 * (X \dot X \dot X \dot Y)+
+6 * (X \dot X \dot Y \dot Y)+
- 4 * (X \dot Y \dot Y \dot Y)+
(Y \dot Y \dot Y \dot Y) - (X \dot X) +
+2 * (X \dot Y) - (Y \dot Y).

D-Encrypted String Matching

Main Idea: FFT, NTT

The inner product of each term can be computed by FFT or NTT after
reversing E(S). Thus, we can compute all the terms in constant number of
FFT or NTT.

Overall Time complexity: O((|S|+|T|) \lg (|S|+|T|))
Overall Space complexity: O(|S|+|T|)

D-Encrypted String Matching

Main Idea: String, KMP, string cycle, hash

E-Sort String

Main Idea: String, KMP, string cycle, hash

Solution 1: We can directly compute hash value of each S_i and group
them by has values.
Note that the hash space should be big enough to avoid hash collision.

Overal time complexity: O(|S|)
Overal space complexity: O(|S|)

E-Sort String(cont.)

Main Idea: String, KMP, string cycle, hash

Solution 2: Notice that if S_i = S_j for some i<j, S is cycle by j-i. Thus, we
just need to find the minimum cycle k. Then, S_i will be equal to S_{i mod
k}.

Finding cycle of string can be done by hash or KMP.

Overal time complexity: O(|S|)
Overal space complexity: O(|S|)

E-Sort String(cont.)

Main Idea: Math, data structure

F-Sum Of Digit

Main Idea: Math, data structure

Notice that SOD(v) will be
● 0 if v is 0
● 15 if v mod 15 == 0
● v mod 15 otherwise

You can prove it by expanding v as \sum v_i*(16^i).

F-Sum Of Digit(cont.)

Main Idea: Math, data structure

Let maintain a segmet tree. For each interval, storing the number of value
module 15. Note that you sure be careful about 0 and 15.

When merging informations from two subtree, just combine them as some
convolution.

Overall time complexity: O((N+Q) \lg N 16^2)
Overall space complexity: O(16 N)

F-Sum Of Digit(cont.)

Main Idea: Math, BFS

G-Coloring Tree

Main Idea: Math, BFS

If there is a oracle F answering the number of way to color the tree such
that the colorness will be larger than or equal to D.

Then the answer will be F(D)-F(D+1)

G-Coloring Tree(cont.)

Main Idea: Math, BFS

Let construct such oracle F.

Colorness should be larger than or equal to D, which is equivalent to that
there is no two nodes colored in the same color within distance D.

Let try to color the tree and keep the above constraint.

G-Coloring Tree(cont.)

Main Idea: Math, BFS

Let color the nodes in BFS order.

When coloring a node v, find number of nodes already colored and within
distance D of v. Denote it as X.

Note that for any pair of those nodes, their distance will also be at most D.
Thus, they will all be colored in different colors.

Then, the possible choice of color of v will be (K-X), multiplied it into the
answer. If X>=K, it’s impossible to color the tree and result in colorness
larger than or equal to D. Then, just return 0.

G-Coloring Tree(cont.)

Main Idea: Math, BFS

For each node, we need to find other nodes within distance K and already
colored. It can be done by another BFS. Thus, for each node, it requires
O(N) time.

Overall Time complexity: O(N^2)
Overall Space complexity: O(N)

G-Coloring Tree(cont.)

Main Idea: Math, Prime Sieve, Prefix Sum

H-diff-prime pairs

Main Idea: Math, Prime Sieve, Prefix Sum

If gcd(i_1, j_1) is not equal to gcd(i_2, j_2), (i_1, j_1) won’t be equal to
(i_2, j_2).

The answer will be sum of number of diff-prime pairs whose gcd is g
for each g.

H-diff-prime pairs(cont.)

Main Idea: Math, Prime Sieve, Prefix Sum

Iterate each g, and find two distinct prime p_1, p_2. Then,
(g p_1, g p_2) will be an answer if g p_1 <= N and g p_2 <= N.
It will be reduced to find the number of prime within (N/g).
It can be done by prime sieve and prefix sum.

Since p_1 not equal to p_2, it’s obvious that gcd(g p_1, g p_2)=g

Overall Time complexity: O(N)
Overall Space complexity: O(N)

H-diff-prime pairs(cont.)

Main Idea: Geometry, Random algo

I-Expected Size of Random Convex Hull

Main Idea: Geometry, Random algo

The shape of triangle doesn’t matter at all.

When randomly choosing N points within triangle T_1, you can always
map them into N points within triangle T_2(By interpolation). Then, their
property of convexity will be the same.

Thus, only the number of points chosen matters.

I-Expected Size of Random Convex Hull

Main Idea: Geometry, Random algo

For each N, randomly generate N points and compute the convex hull
several times. Then, compute the average.

The number of testing times would be not enough within 1 second. But, N
is only up to 10.

You can compute the answer locally. For each N, 10^8 times would be
enough to converge to the answer.

Overall time complexity: O(1)
Overall space complexity: O(1)

I-Expected Size of Random Convex Hull

Main Idea: Geometry

J-Distance to Work

Main Idea: Geometry

We can binary search the answer. For a fixed distance D, we need to
compute the number of portion within the polygon.
It’s equivalent to compute the intersection area of a circle and a polygon.

We can decompose the polygon into several triangle. Then, compute the
intersection of circle and triangle. The final answer will be a weighted sum
of them.

Overall time complexity: O(\log(1/(10^{-6})) N M)
Overall space complexity: O(N+M)

J-Distance to Work(cont.)

