
Grand Prix of China
Beijing, China, March 10th, 2019

Problem Tutorial: “Array”
Let previ be the position of previous occurrence of ai (-1 when there is no such position) and nexti be
the position of next occurrence of ai (n + 1 when there is no such position). Apparently, there’s no need
to change such ax that prevx ̸= −1. So, we can only focus on those ax where prevx = −1.

1 change ax to some ay (y < x)

The cost will be |ax − ay|+ nextx(nextx−1)
2 − x(x−1)

2 . We should make |ax − ay| as minimal as possible. It
can be done by using a set to maintain all the value before x.

2 change ax to some ay (x ≤ y < nextx)

The cost will be |ax − ay| + y(y−1)
2 − nextx(nextx−1)

2 . Assume ax ≤ ay (ax ≥ ay is the same), this can be
done by using a segment tree to maintain the minimum value of y(y−1)

2 − ay.

Problem Tutorial: “Chiaki Chain”
Some observation of the k-th order Chiaki Chain with n vertices and m edges:

• n+ k − 1 = m

• connected, no loops, no multiple edges;

• each vertex in the cycle has degree 2 except one vertex connected with the sub-chain;

• after removing all the cycles and sub-chains, the remainder is a chain.

Firstly, use a simple depth-first search to find all the cycles and check whether the degree constraint is
satisfied.

Then remove the cycles and sub-chains using breadth-first search and we should get a chain or a single
vertex (all other graphs we get is invalid).

If we get a single vertex, we should check if the length of sub-chain is greater than 1 when k = 1 and
check if the length of at least one sub-chain is greater than 1 when k = 2 and check if the length of at
least two sub-chains is greater than 1 when k = 3.

Otherwise, we should enumerate each vertex with degree 3 and check if the sub-chain is valid: the length
of the sub-chain is at least 1. In addition, if the vertex is the end of the chain and two sub-chains extend
from it, the length of at least one sub-chain should be greater than 1.

Problem Tutorial: “Cut the Plane”
At first, find a line to split the points into two parts – the first part has ⌊n2 ⌋ points and the second has
⌈n2 ⌉.
Then, find a tangent line of the convex hulls of each part and we can use a line to separate both the
tangent points. Repeat until only one point left in each part.

Problem Tutorial: “Edges Counting”
Let tn be the number of trees with n labeled vertices, and its exponential generating function be
T (x) =

∑
n≥1

tn
n!x

n. Cayley’s formula states that tn = nn−2. Similarly, let rtn be the number of rooted
trees with n labeled vertices, and its exponential generating function be RT (x) =

∑
n≥1

rtn
n! x

n. Since

Page 1 of 5

Grand Prix of China
Beijing, China, March 10th, 2019

rtn = ntn, we can figure out that RT (x) = xT ′(x), where T ′(x) is the derivative function of T (x) with
respect to x.

We call a simple graph generated from a tree with an additional edge “pseudotree”, which contains exactly
one simple cycle, and if one removes the cycle from the pseudotree, the graph will be changed into
a forest. Let pn be the number of pseudotrees with n labeled vertices, and its exponential generating
function be P (x) =

∑
n≥1

pn
n! x

n. An observation is that P (x) =
∑

k≥3
RTk(x)

k!
(k−1)!

2 =
∑

k≥3
RTk(x)

2k . The
combinatorial meaning is to enumerate the number of vertices on the only cycle, denoted by k, and then
the remain parts are k rooted trees, so we can get the conclusion by convolution. Moreover, we can get
P ′(x) = RT ′(x)

1−RT (x)
RT 2(x)

2 .

After that, we can count the number of good graphs. That is to say, let gn be the number of good graphs
with n labeled vertices, and its exponential generating function be G(x) =

∑
n≥1

gn
n! x

n, and we can get

G(x) =
∑

k≥0
(T (x)+P (x))k

k! = eT (x)+P (x). By the way, it can be rewritten as G′(x) = G(x)(T (x) + P (x))′.

If we know the number of good graphs, when we count the number of edges on cycles, we could
count the contribution of each component. That is to say, we may enumerate a component, which
is a pseudotree, and count the number of vertices on its cycle. The generating function should be∑

k≥3 k
RTk(x)

2k = RT (x)
1−RT (x)

RT 2(x)
2 . Let the generating function be C(x), and we know G(x)C(x) yields

the answer.

Due to that the modulus may not be a prime larger than n, so we can hardly calculate each generating
function. However, each integer sequence (e.g. tn, rtn, pn, gn, . . .) is easy to get. One can use the binomial
coefficients to calculate the convolution. The time complexity is O(max2{n}).

Problem Tutorial: “Equanimous”
It should be the hardest problem in this contest. The conclusion is that we can construct a deterministic
finite automaton (DFA), whose minimal automaton contains only 715 states, and use digit DP on this
DFA. To improve the query time complexity, we can prepare more information at first and calculate less
information for each query. The time complexity should be O(D2LS + TL), where D = 10 is the radix,
L = 100 is the maximal length of a number, S = 715 is the number of states on DFA, and T is the number
of queries.

To build the DFA, we need to understand how to calculate f(m) for a given integer m firstly. Let dp(i, j)
be the possibility (true or false) such that the first i digits of m could form an expression whose absolute
value is exactly j. The transition should be dp(i − 1, j) → dp(i, j + di), dp(i − 1, |j − di|), where di is
the i-th digits of m. Actually, we don’t need to memorize the information of j ≥ K for some integer K.
We know 0 ≤ f(m) ≤ 9, and the worst case for this DP occurs when m contains consecutive digits like
99 . . . 9︸ ︷︷ ︸
8 times

88 . . . 8︸ ︷︷ ︸
9 times

, so we can just set K as (8× 9 + 1).

After this improvement, the information of each integer (for the sake of transition) could be represented
as a 01-sequence of length 73. Actually, the number of different sequences is fairly small, so we can build
a DFA consisting of these sequences and corresponding transitions. Inspired by the aforementioned worst
case, we can minimize the DFA using partition refinement through at most 9 iterations. The remaining
part is just a typical digit DP problem.

Problem Tutorial: “Fighting Against Monsters”
It is easy to prove that no more than 100 seconds the first two monsters must die.

Let dp(i, j, k) be the minimum total damages the hero suffered when it is the i-th second, the first monster
has suffer a total damage j and the second monster has suffer a total damage k.

If HPC ≤ 100, it is easy. If HPC > 100, just enumerate all i, j and k, make sure that the first two
monsters are dead and then use greedy to attack the boss.

Page 2 of 5

Grand Prix of China
Beijing, China, March 10th, 2019

Problem Tutorial: “Mysterious Triple Sequence”
It’s a bit hard to solve the problem directly. Let’s reduce this problem into the discrete logarithm
problem which is easier to solve in sqrt time.

Lemma 1: Let f0 = 0, f1 = 1, fn+2 = 2fn+1+fn (n ∈ N+). It shows that (ak, bk, ck) = (f2k+1, f2k , f2k−1).

Brief Proof. There are many approaches to prove that (and further things), so I’d like to leave a type
of brief introduction here.

Let F =

[
0 1
1 2

]
. It can be proved by induction that Fn =

[
fn−1 fn
fn fn+1

]
(n ∈ N+).

There is an observation that
[
fn−1 fn
fn fn+1

] [
fm−1 fm
fm fm+1

]
=

[
fn−1fm−1 + fnfm fn−1fm + fnfm+1

fnfm−1 + fn+1fm fnfm + fn+1fm+1

]
which is helpful to prove (ak, bk, ck) = (f2k+1, f2k , f2k−1) by induction.

Lemma 2: Sequence {(fk+1, fk)}∞k=0 is a pure periodic sequence in modulo any integer p.

Brief Proof. Assuming that there exist two distinct integers x and y such that (fx+1, fx) ≡ (fy+1, fy)
(mod p), it can be proved that (fx+k+1, fx+k) ≡ (fy+k+1, fy+k) (mod p) for any positive integer k just by
using matrix multiplication of matrix F .

Furthermore, it is easy to show that F−1 =

[
−2 1
1 0

]
always exists in modulo any integer p and thus it is

possible to extend the above k from any positive integer (k ∈ N+) to any integer (k ∈ Z).
Lemma 3: Let L(p) be the minimal positive period of sequence {(fk+1, fk)}∞k=0 in modulo integer p. It
shows that L(p) ≤ 8

3p for any integer p.

Brief Proof. If we replace sequence {fn} by Fibonacci sequence, it will be a classic conclusion that
L(p) ≤ 6p. In addition, it is not difficult to conclude the formula of the period for {fn} by a similar
approach. If you want to know more details, please check “Pisano period - Wikipedia” and “The Period
of the Fibonacci Sequence Modulo j”. If not, the following are conclusions.

Case 1. If p = 2, L(p) = 2.

Case 2. If p is an odd prime such that there exists an integer x satisfying x2 ≡ 2 (mod p), L(p) is a
divisor of (p− 1). In that case, p ≡ 1 or 7 (mod 8).

Case 3. If p is an odd prime such that there exists no integer x satisfying x2 ≡ 2 (mod p), L(p) is a
divisor of 2(p+ 1). In that case, p ≡ 3 or 5 (mod 8).

Case 4. If p = qe such that q is a prime and e is an integer greater than 1, L(p) is a divisor of qe−1L(q).

Case 5. If p = qe11 qe22 · · · qemm such that q1, q2, · · · , qm are distinct primes, L(p) equals to the least common
multiple of L(qe11), L(qe22), · · · , L(qemm).

The worst case such that L(p)
p is maximum occurs when p = qe, q is a prime, e is an integer and q ≡ 3 or 5

(mod 8). In that case, L(p)
p |2(q+1)qe−1

qe = 2q+2
q ≤ 8

3 .

By the way, please note that L(1814) = 2158425724, which is actually the only one case such that p ≤ 230

but L(p) ≥ 231 (random tests might not cover this case), so be careful with the 32-bit integer.

Solution:

We can reduce the problem into two stage:

1. First, find the integer u (0 ≤ u < L(p)) such that (x, y, z) ≡ (fu+1, fu, fu−1) (mod p). Because
{(fk+1, fk)}∞k=0 (mod p) is pure periodic, you can use “Baby-step giant-step algorithm” (a type of
meet-in-the-middle algorithm) directly.

2. Then, find the integer k (k ≥ m) such that 2k ≡ u (mod L(p)). Because {2k}∞k=0 is not pure periodic
in modulo L(p) (L(p) is always even), you should enumerate the acyclic part and reduce L(p) into
an odd number and then use Baby-step giant-step algorithm.

Page 3 of 5

Grand Prix of China
Beijing, China, March 10th, 2019

However, solution in time complexity O(n
√
p log p) or O(n

√
p) would be rejected. Actually, this type of

meet-in-the-middle algorithm could be optimized easily for multi-queries. Let’s set a threshold T first (we
will determine an optimal value for it soon).

In the first stage, we need to find the least power of the invertible matrix F which equals to a given
matrix G. Assuming that F xT+y = G (0 ≤ y < T), we have F y = G(F−T)x. After precalculating
F 0, F 1, · · · , F T−1, you can just enumerate x and check if y exists (by binary search or hash). The time
complexity for multi-queries is O(T log T+nL(p)

T log T). (note: there are only two element in F y is necessary
to memorize)

In the second stage, we need to find the least power of 2 which equals to a given number u. let L(p) be
2αL′(p) such that L′(p) is an odd integer. If there exists integer k such that 0 ≤ k < α, 2k ≡ u (mod L(p)),
that is finished. If not, we can reduce the problem into 2k−α ≡ u

2α (mod L′(p)) (the minimal positive period
of 2 will be a divisor of φ(L′(p))) and then solve it in time complexity O(T log T + n(α+ L′(p)

T log T)) for
multi-task.

To approximate optimal performance, we can just set T as √
np and the time complexity can be revised

as O(
√
np log

√
np) or O(

√
np).

By the way, you can get L(p) and the period of 2k in modulo L′(p) by Baby-step giant-step algorithm
instead of utilizing some conclusions in number theory (if you’d known or guessed that L(p) ≤ 8

3p, :P).

Problem Tutorial: “Inner Product”
If we enumerate an edge (u, v) in the first tree, remove it from the first tree, the first tree will split into
two parts. And if we color the vertex in the second tree according the part which it belong to in the first
tree, the contribution of (u, v) will be

w1(u, v)

n∑
x=1

n∑
y=1

[colx ̸= coly]d2(x, y)

Use the technique dsu on tree to maintain the color of each vertex in the second tree, and at the same
time use centroid decomposition to maintain the sum of distance between two vertices with different
color in the second tree.

The time complexity will be O(n log2 n). There also exists an O(n log n) solution, we leave it for the
readers.

Problem Tutorial: “Counting Polygons”
Formally, this problem wants you to count the number of distinct integer sequences A = [a0, a1, . . . , am−1]
meeting the following conditions:

•
m−1∑
i=0

ai = n, where ai ∈ Z+;

• 2max{a0, a1, . . . , am−1} < n;

• if there exists another integer sequence B = [b0, b1, . . . , bm−1] meeting the above conditions and an
integer k such that ai = b(i+k) mod m for i = 0, 1, . . . ,m− 1, then A and B are considered same and
they should be counted only once;

• if there exists another integer sequence B = [b0, b1, . . . , bm−1] meeting the above conditions and an
integer k such that ai = bm−1−i for i = 0, 1, . . . ,m− 1, then A and B are considered same;

• if A and B are considered same, and B and C are considered same, then A and C are considered
same.

Page 4 of 5

Grand Prix of China
Beijing, China, March 10th, 2019

If we ignore the second condition, we can count the number using Burnside’s lemma. To deal with the
second condition, we can use the Inclusion-Exclusion principle, since there may be at most one ai that
breaks the condition. In this case, we don’t need to consider all the equivalence classes.

By the way, solution with time complexity O
(
max{n}+

∑
T

d(gcd(n,m))

)
should be accepted, where

d(x) is the number of divisors of x. It can get an accepted verdict because d(x) ≤ 500 for x ∈ [1, 107].

Problem Tutorial: “Square Graph”
Recall the method to extract all the squares using suffix array: assume the half length of the square
is L, find the longest common prefix and the longest common suffix of substring s[iL, (i + 1)L) and
s[(i−1)L, iL), and the start position (it is an interval) can be found using the longest common prefix and
the longest common suffix.

Let’s enumerate the half length L of the square according to sorted order of wi and find all the squares.
We can get a set of triples (x, y, L) which means for all i in [x, y], i and i+ L should be connected with
an edge of weight L.

Next, let’s try to use two kinds of transformations which we refer to as Split and Reduce to solve this
subproblem for L.

A Split operation transforms a single triple into an equivalent system of shorter triples. For a triple
(x, y, L), we can find an integer k such that 2k < y−x+1 and 2k+1 ≥ y−x+1. The triple can be spilted
into two triples (x, x+ 2k − 1, L) and (y − 2k + 1, y, L).

A Reduce operation will remove useless triples in a set of triples with the same interval length. Since
the length of all the intervals is the same, we can only care about the left end the interval. Make a graph
by connected x and x+ L and find the spanning forest of the graph and only the triples in the spanning
forest is usefull.

Repeat those two transformations until all the length of interval equals to 1, we solve this subproblem.

For the whole problem, we can maintain a disjoint union set for every k from 0 to ⌊log2 n⌋, and share the
disjoint union set to find the spanning forest.

The time complexity will be O(n log n+ nα(n)).

Problem Tutorial: “Three Dimensions”
Let dp(i, S, T) be the sum when

• first i bits are considered,

• S = (i1, i2, . . . , i9) where i1, i2 and i3 means the sign of |xa−xb|, |ya−yb|, and |za−zb| respectively;
i4, i5 and i6 means whether |xa − xb|, |ya − yb|, and |za − zb| is the maximum value; i7, i8 and i9
means whether we have to borrow a bit from the (i− 1)-th bit when doing subtraction.

• T = (i1, i2, . . . , i6) where ik means whether the k-th number from xa, ya, za, xb, yb, zb) exceeds the
limit.

The recurrence equation is quite straightforward.

Page 5 of 5

