ICPC Asia::Tokyo 2014 Problem K – L_{∞} Jumps

- Sort the given points (x₁, y₁), ..., (x_n, y_n) in clockwise order. Call them <u>base vectors</u>.
- Suppose we fix jump vectors to $(u_1, v_1), ..., (u_n, v_n)$. $(u_1+...+u_n = s, v_1+...+v_n = t)$
- What is the optimal assignment between base vectors and jump vectors? → Greedy is the best

- Sort the given points (x₁, y₁), ..., (x_n, y_n) in clockwise order. Call them <u>base vectors</u>.
- Suppose we fix jump vectors to $(u_1, v_1), ..., (u_n, v_n)$. $(u_1+...+u_n = s, v_1+...+v_n = t)$
- What is the optimal assignment between base vectors and jump vectors? → Greedy is the best

- Sort the given points (x₁, y₁), ..., (x_n, y_n) in clockwise order. Call them <u>base vectors</u>.
- Suppose we fix jump vectors to $(u_1, v_1), ..., (u_n, v_n)$. $(u_1+...+u_n = s, v_1+...+v_n = t)$
- What is the optimal assignment between base vectors and jump vectors? → Greedy is the best

- Sort the given points (x₁, y₁), ..., (x_n, y_n) in clockwise order. Call them <u>base vectors</u>.
- Suppose we fix jump vectors to $(u_1, v_1), ..., (u_n, v_n)$. $(u_1+...+u_n = s, v_1+...+v_n = t)$
- What is the optimal assignment between base vectors and jump vectors? → Greedy is the best

- Sort the given points (x₁, y₁), ..., (x_n, y_n) in clockwise order. Call them <u>base vectors</u>.
- Suppose we fix jump vectors to $(u_1, v_1), ..., (u_n, v_n)$. $(u_1+...+u_n = s, v_1+...+v_n = t)$
- What is the optimal assignment between base vectors and jump vectors? → Greedy is the best

- Sort the given points (x₁, y₁), ..., (x_n, y_n) in clockwise order. Call them <u>base vectors</u>.
- Suppose we fix jump vectors to $(u_1, v_1), ..., (u_n, v_n)$. $(u_1+...+u_n = s, v_1+...+v_n = t)$
- What is the optimal assignment between base vectors and jump vectors? → Greedy is the best

- But how to determine jump vectors?
- Let's fix the count of jump vectors in (upper/right/bottom/left) part of the square edge.
 - *U* := count in upper
 - *R* := count in right
 - *B* := count in bottom
 - *L* := count in left

- Let (p₁, d), ..., (p_U, d) := jump vectors in upper, (q₁, -d), ..., (q_B, d) := jump vectors in bottom.
 - Since U,R,B,L is fixed,

 $p_1+...+p_U+q_1+...+q_B-Ld+Rd=s$ must be satisfied.

 Since greedy assignment is the best, we can compute optimal jump vectors (if we fix offset.)

- Complexity?
 - Fix U,R,B,L: Since U+R+B+L=n, there are $O(n^3)$ combins.
 - Fix offset for greedy assignment : O(n) ways.
 - Compute the cost for jump vectors : O(n) time.
 - $O(n^5)$ time in total.

K: L_{∞} Jumps – Summary

No submission...

