ICPC Asia::Tokyo 2014 Problem K - L_{∞} Jumps

K: L_{∞} Jumps - Solution (1/4)

- Sort the given points $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ in clockwise order. Call them base vectors.
- Suppose we fix jump vectors to $\left(u_{1}, v_{1}\right), \ldots,\left(u_{n}, v_{n}\right)$. $\left(u_{1}+\ldots+u_{n}=s, v_{1}+\ldots+v_{n}=t\right)$
- What is the optimal assignment between base vectors and jump vectors? \rightarrow Greedy is the best

Base vectors

Jump vectors

K: L_{∞} Jumps - Solution (1/4)

- Sort the given points $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ in clockwise order. Call them base vectors.
- Suppose we fix jump vectors to $\left(u_{1}, v_{1}\right), \ldots,\left(u_{n}, v_{n}\right)$. $\left(u_{1}+\ldots+u_{n}=s, v_{1}+\ldots+v_{n}=t\right)$
- What is the optimal assignment between base vectors and jump vectors? \rightarrow Greedy is the best

K: L_{∞} Jumps - Solution (1/4)

- Sort the given points $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ in clockwise order. Call them base vectors.
- Suppose we fix jump vectors to $\left(u_{1}, v_{1}\right), \ldots,\left(u_{n}, v_{n}\right)$. $\left(u_{1}+\ldots+u_{n}=s, v_{1}+\ldots+v_{n}=t\right)$
- What is the optimal assignment between base vectors and jump vectors? \rightarrow Greedy is the best

K: L_{∞} Jumps - Solution (1/4)

- Sort the given points $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ in clockwise order. Call them base vectors.
- Suppose we fix jump vectors to $\left(u_{1}, v_{1}\right), \ldots,\left(u_{n}, v_{n}\right)$. $\left(u_{1}+\ldots+u_{n}=s, v_{1}+\ldots+v_{n}=t\right)$
- What is the optimal assignment between base vectors and jump vectors? \rightarrow Greedy is the best

K: L_{∞} Jumps - Solution (1/4)

- Sort the given points $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ in clockwise order. Call them base vectors.
- Suppose we fix jump vectors to $\left(u_{1}, v_{1}\right), \ldots,\left(u_{n}, v_{n}\right)$. $\left(u_{1}+\ldots+u_{n}=s, v_{1}+\ldots+v_{n}=t\right)$
- What is the optimal assignment between base vectors and jump vectors? \rightarrow Greedy is the best

K: L_{∞} Jumps - Solution (1/4)

- Sort the given points $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ in clockwise order. Call them base vectors.
- Suppose we fix jump vectors to $\left(u_{1}, v_{1}\right), \ldots,\left(u_{n}, v_{n}\right)$. $\left(u_{1}+\ldots+u_{n}=s, v_{1}+\ldots+v_{n}=t\right)$
- What is the optimal assignment between base vectors and jump vectors? \rightarrow Greedy is the best

K: L_{∞} Jumps - Solution (2/4)

- But how to determine jump vectors?
- Let's fix the count of jump vectors in (upper/right/bottom/left) part of the square edge.
- $U:=$ count in upper
R := count in right
$B:=$ count in bottom
L := count in left

Base vectors

Jump vectors

K: L_{∞} Jumps - Solution (3/4)

- Let $\left(p_{1}, d\right), \ldots,\left(p_{U}, d\right):=$ jump vectors in upper, $\left(q_{1},-d\right), \ldots,\left(q_{B}, d\right):=$ jump vectors in bottom.
- Since U, R, B, L is fixed,

$$
p_{1}+\ldots+p_{U}+q_{1}+\ldots+q_{B}-L d+R d=s
$$

must be satisfied.

- Since greedy assignment is the best, we can compute optimal jump vectors (if we fix offset.)

Base vectors

Jump vectors

K: L_{∞} Jumps - Solution (4/4)

- Complexity?
- Fix U, R, B, L : Since $U+R+B+L=n$, there are $O\left(n^{3}\right)$ combins.
- Fix offset for greedy assignment : $O(n)$ ways.
- Compute the cost for jump vectors : $O(n)$ time.
- $O\left(n^{5}\right)$ time in total.

Base vectors

Jump vectors

K: L_{∞} Jumps - Summary

No submission...

