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Problem A
Assignment Algorithm

Submits: 97
Accepted: at least 56

First solved by: FI MUNI 01
Masaryk University

(Fabík, Pokorný, Priessnitz)
00:37:18

Author: Ivan Paljak
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Implement the rules carefully.

Break down the complex algorithm into smaller simple 
pieces that are easy to implement.

Tip: Use helper functions.
● NumEmptySeats(row)
● SelectRow()
● GetSeatPriority(column)
● GetPlaneBalance()
● SelectSeat(row)
● ...



Problem H
Hidden Hierarchy

Submits: 95
Accepted: at least 52

First solved by: MFF3
Charles University in Prague
(Konečný, Madaj, Rozhoň)

00:22:48

Author: Luka Kalinovčić
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/cerc/problems/a/testdata/in 1000000
/cerc/problems/a/testdata/out 8
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  /cerc/problems/b/testdata/ 19
- /sys/ 100
  /sys/kernel/ 100
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Step 1: Build the directory tree.
For each file:

Make a list p of parent directories up to the root
For each dir in list p:

Add file size to dir size
For each adjacent dir_A, dir_B in list p:

Add dir_B to the set of dir_A’s subdirectories

Step 2: Find directories to collapse.
Collapse a dir if:
a) It has subdirectories, and
b) size of each subdirectory is below threshold.

Step 3: Print the directory tree recursively.

Tip: Consider Python.



Problem F
Faulty Factorial

Submits: 229
Accepted: at least 32

First solved by: UW3
University of Warsaw

(Hołubowicz, Paluszek, Tabaszewski)
00:38:14

Author: Lovro Pužar



Faulty factorial: Take any factor of a factorial and 
make it smaller, but keep it positive.

Factorial: 1 · 2 · 3 · 4 · 5 · 6 · 7 · 8

Faulty factorial: 1 · 2 · 3 · 4 · 5 · 2 · 7 · 8



Case r = 0:
If n < p:

None of the factors is divisible by p: impossible.

Problem: Find any faulty factorial of length n that 
gives reminder r when divided by prime number p.



Case r = 0:
If n < p:

None of the factors is divisible by p: impossible.
Else:

The factorial is already divisible by p, just don’t 
mess it up. Impossible when n = p = 2.

Problem: Find any faulty factorial of length n that 
gives reminder r when divided by prime number p.



Case r > 0:
If n >= 2p:

Two factors divisible by p, we can’t make both 
smaller: impossible.

Problem: Find any faulty factorial of length n that 
gives reminder r when divided by prime number p.



Case r > 0:
If n >= 2p:

Two factors divisible by p, we can’t make both 
smaller: impossible.

Else if n >= p:
We need to change the factor p, if possible.

Problem: Find any faulty factorial of length n that 
gives reminder r when divided by prime number p.



Case r > 0:
If n >= 2p:

Two factors divisible by p, we can’t make both 
smaller: impossible.

Else if n >= p:
We need to change the factor p, if possible.

Else:
n < p <= 10 000 000, so we can try each factor.

Problem: Find any faulty factorial of length n that 
gives reminder r when divided by prime number p.



Problem: Find a faulty factorial of length n < p, with 
a fault at position i, that gives reminder r > 0 when 
divided by prime number p.

We are looking for x such that:
n! / i · x ≡ r (modulo p)



Problem: Find a faulty factorial of length n < p, with 
a fault at position i, that gives reminder r > 0 when 
divided by prime number p.

We are looking for x such that:
n! / i · x ≡ r (modulo p)
x ≡ r · i / n! (modulo p)



Problem: Find a faulty factorial of length n < p, with 
a fault at position i, that gives reminder r > 0 when 
divided by prime number p.

We are looking for x such that:
n! / i · x ≡ r (modulo p)
x ≡ r · i / n! (modulo p)
x ≡ r · i · n!-1 (modulo p)



Problem: Find a faulty factorial of length n < p, with 
a fault at position i, that gives reminder r > 0 when 
divided by prime number p.

We are looking for x such that:
n! / i · x ≡ r (modulo p)
x ≡ r · i / n! (modulo p)
x ≡ r · i · n!-1 (modulo p)
x ≡ r · i · n!p-2 (modulo p)

Compute x, and check whether x < i.



Problem J
Justified Jungle

Submits: 203
Accepted: at least 17

First solved by: Jagiellonian 1
Jagiellonian University in Krakow

(Hlembotskyi, Stokowacki, Zieliński)
00:16:32

Author: Luka Kalinovčić, Ivan Katanić



Problem: Given a tree, find all integers c, such that 
we can cut a tree into components of size c.

c = 3



Problem: Given a tree, find all integers c, such that 
we can cut a tree into components of size c.

c = 2



Problem: Given a tree, find all integers c, such that 
we can cut a tree into components of size c.

c = 1



Problem: Given a tree, find all integers c, such that 
we can cut a tree into components of size c.

The tree size needs to be divisible by c.
There aren’t that many divisors: worst case 240 for 
n=720720.
We can try each divisor separately.



Problem: Given a tree of size n and integer c, such 
that c | n, can we cut it into components of size c?

Iterative algorithm:
If n = c: done.
Otherwise:

Find an edge that divides the tree into subtrees 
of sizes c and n − c.
If there is no such edge: impossible.
Otherwise: Cut the edge and repeat the 
algorithm on the subtree of size n − c.



c = 3

Problem: Given a tree of size n and integer c, such 
that c | n, can we cut it into components of size c?



c = 3

Problem: Given a tree of size n and integer c, such 
that c | n, can we cut it into components of size c?



Problem: Given a tree of size n and integer c, such 
that c | n, can we cut it into components of size c?



c = 2

Problem: Given a tree of size n and integer c, such 
that c | n, can we cut it into components of size c?



c = 2

Problem: Given a tree of size n and integer c, such 
that c | n, can we cut it into components of size c?



c = 2

Problem: Given a tree of size n and integer c, such 
that c | n, can we cut it into components of size c?



Problem: Given a tree of size n and integer c, such 
that c | n, can we cut it into components of size c?



Problem: Given a tree of size n and integer c, such 
that c | n, can we cut it into components of size c?

Iterative algorithm is difficult to implement in O(n), and 
might time out.

Simplified algorithm:
Root the tree and compute the size of each subtree 
(only once, no need to repeat for each divisor).

Find edges with subtrees sizes equal to a multiple of 
c. Those are the ones we’ll end up cutting.

If the number of found edges is equal to n / c − 1: yes!
Otherwise: no!
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c = 2

Found edges:
3 ≠ n / c − 1  →  NO
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1
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c = 3

Found edges:
3 = n / c − 1  →  YES



Overall complexity: O(n·σ(n)), where σ(n) is the 
number of divisors of n.

O(n + σ(n)2) is possible with an extra insight.



Problem L
Lunar Landscape

Submits: 41
Accepted: at least 5

First solved by: UW2
University of Warsaw

(Boguta, Czajka, Farbiś)
02:02:13

Author: Luka Kalinovčić





Key observation: The grid is small enough to iterate 
over each unit square and “paint it blue” in memory.

However, the naive algorithm that iterates through 
each unit square of each frame is too slow.

Instead, let’s first place a “bucket full of paint” in a 
corner of each frame.
Then, we’ll sweep across the grid and whenever we 
encounter a bucket, we’ll paint one unit square and 
propagate the bucket to neighbouring squares.
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For each triangle we can 
deduce whether it was painted 
or not.
We need to check whether we 
ever had a type A bucket of 
paint in the lower left corner of 
the unit square or a type B 
bucket in the right position 
(depending on the triangle 
type).



For each triangle we can 
deduce whether it was painted 
or not.
We need to check whether we 
ever had a type A bucket of 
paint in the lower left corner of 
the unit square or a type B 
bucket in the right position 
(depending on the triangle 
type).



For each triangle we can 
deduce whether it was painted 
or not.
We need to check whether we 
ever had a type A bucket of 
paint in the lower left corner of 
the unit square or a type B 
bucket in the right position 
(depending on the triangle 
type).



For each triangle we can 
deduce whether it was painted 
or not.
We need to check whether we 
ever had a type A bucket of 
paint in the lower left corner of 
the unit square or a type B 
bucket in the right position 
(depending on the triangle 
type).

Time complexity: O(n + H · W)
Memory complexity: O(H · W)



Problem G
Gambling Guide

Submits: 41
Accepted: at least 16

First solved by: UW1
University of Warsaw

(Dębowski, Radecki, Sommer)
01:30:08

Author: Gustav Matula



Problem:
You're located at a node in an undirected graph.

In each step a neighboring node is chosen at 
random, and you can either move there or stay 
where you are.

Find the expected number of steps to get from node 
1 to node N, if you used an optimal strategy.



Assume we knew f(x) - the expected number of 
steps to get from node x to node N.

The optimal strategy to use at each node x is then 
an obvious one: when offered to move to a 
neighbour y, move if f(y) < f(x), and stay otherwise.

But we don't know f(x), except for f(N) = 0.

Let S be a set of nodes for which we know the 
value of f(x). Starting from S = {N}, we'll keep 
adding nodes one by one in the order of increasing 
values f(x).



To find the next node to add, we consider nodes 
outside of S, but neighbouring some node in S.
Compute the f'(x) for each such node following the 
strategy as if that node is the next to add (i.e. move 
to nodes in S, or stay otherwise).

The node with minimal f'(x) is the next to add.
We set f(x) = f'(x) and add x to S.



We end up with an algorithm very similar to Dijkstra's 
single source shortest path algorithm, and we can 
implement it efficiently using the same techniques.

Complexity: O((N + M) log N) using the classic 
implementation with a binary heap (or STL set).



Problem D
Donut Drone

Submits: 60
Accepted: ?

Author: Luka Kalinovčić
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The task is to implement two functions:
move(k): Moves a drone k steps and reports the 
final coordinates.
update(row, col, value): Updates the elevation at 
provided coordinates.
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Let’s start with a naive solution:
def simple_move(k):
  for i in range(k):
    coords = step(coords)
  return coords

Complexity: O(k) - too slow.
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Observation: The drone will eventually enter a cycle.
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Observation: The drone will eventually enter a cycle.
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Observation: The drone will eventually enter a cycle.



def smarter_move(k):
  first_seen = dict()
  for i in range(k):
    if coords not in first_seen:
      first_seen[coords] = i
    else:
      cycle_length = i - first_seen[coords]
      steps_left = k - i
      return simple_move(steps_left % cycle_length)
    coords = step(coords)
  return coords

Complexity O(R · C) - still too slow in the worst case.



Key idea: Maintain an array jump[row] that stores 
the cell we would end up if we moved C steps from 
a cell (row, 1) in the first column.

As soon as we reach the first column we can start 
making jumps of size C that stay in the first column 
until there are less C steps to make.

Then we proceed to make single steps again to find 
the final cell.

If we also implement the cycle detection among the 
cells in the first column we end up with a O(R + C) 
move operation.



However, the update(row, col, value) becomes tricky, 
as we may need to update the jump[row] array.
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Up to three cells may be directly affected. 
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Up to three cells may be directly affected. 

1 2 6 1 1 1
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5 5 5 3 3 5

7 7 7 1 2 1

6 5 6 2 1 4

3 1 2 5 6 3



For each affected cell, we'll run the update algorithm.
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2 8 1 2 2 2

5 5 5 3 3 5

7 7 7 1 2 1

6 5 6 2 1 4

3 1 2 5 6 3



For each affected cell, we'll run the update algorithm.
1) Repeatedly make steps to find in which cell in the 
first column we'll end up.
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7 7 7 1 2 1

6 5 6 2 1 4

3 1 2 5 6 3



For each affected cell, we'll run the update algorithm.
1) Repeatedly make steps to find in which cell in the 
first column we'll end up.

1 2 6 1 1 1

2 8 1 2 2 2

5 5 5 3 3 5

7 7 7 1 2 1

6 5 6 2 1 4

3 1 2 5 6 3



For each affected cell, we'll run the update algorithm.
1) Repeatedly make steps to find in which cell in the 
first column we'll end up.

1 2 6 1 1 1

2 8 1 2 2 2

5 5 5 3 3 5

7 7 7 1 2 1

6 5 6 2 1 4

3 1 2 5 6 3



For each affected cell, we'll run the update algorithm.
1) Repeatedly make steps to find in which cell in the 
first column we'll end up.

1 2 6 1 1 1

2 8 1 2 2 2

5 5 5 3 3 5

7 7 7 1 2 1

6 5 6 2 1 4

3 1 2 5 6 3



For each affected cell, we'll run the update algorithm.
1) Repeatedly make steps to find in which cell in the 
first column we'll end up.

1 2 6 1 1 1

2 8 1 2 2 2

5 5 5 3 3 5

7 7 7 1 2 1

6 5 6 2 1 4

3 1 2 5 6 3



For each affected cell, we'll run the update algorithm.
2) Starting from the affected cell, backtrack to the first 
column, maintaining an interval of affected rows.

1 2 6 1 1 1

2 8 1 2 2 2

5 5 5 3 3 5

7 7 7 1 2 1

6 5 6 2 1 4

3 1 2 5 6 3



For each affected cell, we'll run the update algorithm.
2) Starting from the affected cell, backtrack to the first 
column, maintaining an interval of affected rows.

1 2 6 1 1 1

2 8 1 2 2 2

5 5 5 3 3 5

7 7 7 1 2 1

6 5 6 2 1 4

3 1 2 5 6 3



For each affected cell, we'll run the update algorithm.
2) Starting from the affected cell, backtrack to the first 
column, maintaining an interval of affected rows.

1 2 6 1 1 1

2 8 1 2 2 2

5 5 5 3 3 5

7 7 7 1 2 1

6 5 6 2 1 4

3 1 2 5 6 3



For each affected cell, we'll run the update algorithm.
3) If we reach the first column, we have an interval of 
rows to update jump[row] for.

1 2 6 1 1 1

2 8 1 2 2 2

5 5 5 3 3 5

7 7 7 1 2 1

6 5 6 2 1 4

3 1 2 5 6 3



Interval bounds may only move by ±1 between 
neighbouring columns, so we can maintain the 
affected interval in O(1) per column as we backtrack.
Overall update complexity is O(C).
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Problem B
Buffalo Barricades

Submits: 17
Accepted: at least 1

First solved by: UW1
University of Warsaw

(Dębowski, Radecki, Sommer)
02:40:43

Author: Luka Kalinovčić
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High level algorithm:

1) Identify the regions at the end, when all fences are up.

2) Count the buffalos in each region.

3) Work backwards, removing fences and merging the 
two regions that become one (using the standard 
union-find algorithm). Prior to the fence removal we 
simply record the current number of buffalos in the 
region to output later.

We'll do 1) and 2) together in a single pass of a 
sweep-line algorithm. In addition to that, we'll also 
compute the ids of regions that need to be merged in 
step 3) at each fence removal.



Sweep-line algorithm overview:

We process fence posts and buffalos in order of 
decreasing y coordinate.

At each step we maintain a set of "active" vertical fences 
that have not yet hit another horizontal fence.

a) When we encounter a buffalo, we find the closest 
active fence to the right, that's the fence of a region 
containing the buffalo at the end.



Sweep-line algorithm overview:

We process fence posts and buffalos in order of 
decreasing y coordinate.

At each step we maintain a set of "active" vertical fences 
that have not yet hit another horizontal fence.

b) When we encounter a fence, we find the neighboring 
region that it will get merged with when the fence is 
removed the same way: it's the first active fence to the 
right.



Sweep-line algorithm overview:

We process fence posts and buffalos in order of 
decreasing y coordinate.

At each step we maintain a set of "active" vertical fences 
that have not yet hit another horizontal fence.

c) We also erect the horizontal fence starting from the 
fence post going to the left. Our fence will hit the first 
active fence to the left that has a smaller index (i.e. was 
erected prior to this fence). Other vertical fences we 
encounter along the way will, in turn, hit the horizontal 
fence we are building, so we remove them from the 
active set.
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Complexity O((N + M) log (N + M))



Problem K
Kitchen Knobs

Submits: 52
Accepted: at least 1

First solved by: UW1
University of Warsaw

(Dębowski, Radecki, Sommer)
01:24:54

Author: Goran Žužić, Luka Kalinovčić



Weird kitchen knobs with 7 non-zero digits. The power of 
a kitchen element is the number you get from reading the 
digits clockwise starting from the top position.

Power: 9689331



We have a sequence of N kitchen elements, and can 
rotate any consecutive subsequence of kitchen knobs by 
an arbitrary degree in a single step.

Find the smallest number of steps to get maximum 
power on each element.



Because we have exactly 7 digits on each knob, every 
element either has:

a) all digits the same, in which case it's always at 
maximal power, or

b) exactly one position in which the maximal power is 
achieved.

We can pretend as if knobs of type a) didn't exist, and 
simplify the problem statement:

Given a sequence A with elements from [0, 6], find the 
smallest number of operations to make every element 
equal to 0. In a single operation we can add k to each 
number in an arbitrary subsequence of A (modulo 7).



0 3 6 5 5 5

0 3 3 2 2 2
+ 4

0 0 0 2 2 2
+ 4

0 0 0 0 0 0
+ 5



1 5 6 2 0 5 2 32

Let define another sequence B: B[i] = A[i] − A[i − 1] 

A:

1 4 1 3 5 5 4 10B: 4

Observe what happens to sequence B as we apply the 
operation to sequence A.

+ 2

1 5 1 4 2 0 4 34A:

1 4 3 3 5 5 4 60B: 4



Once again we can simplify the problem:

Given a set B with elements from [0, 6], find the smallest 
number of operations to make every element equal to 0. 
In a single operation we can add k to any number in the 
set and subtract k from any other number in the set 
(modulo 7).



1 4 1 3 5 5 4 10 4

1 2 1 3 5 0 4 10 4

+2-2

1 0 1 3 0 0 4 10 4

+2-2

1 0 1 0 0 0 0 10 4

+3-3

2 0 0 0 0 0 0 10 4

-1+1

3 0 0 0 0 0 0 00 4

-1+1

0 0 0 0 0 0 0 00 0

-4+4



Observation: Given any set of N numbers that add up to 
0 (modulo 7), we can make all numbers zero in N − 1 
operations.

In each operation take any two non-zero numbers from 
the set, and make one of them zero. If there are only two 
numbers left, it is guaranteed they will both become zero 
after the last operation.



Simplifying the problem even further:

Given a set B with elements from [0, 6], group them into 
as many groups as possible such that the sum of each 
group is 0 (modulo 7).
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Simplifying the problem even further:

Given a set B with elements from [0, 6], group them into 
as many groups as possible such that the sum of each 
group is 0 (modulo 7). 

1 4 1 3 5 5 4 1
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B: 4



Simplifying the problem even further:

Given a set B with elements from [0, 6], group them into 
as many groups as possible such that the sum of each 
group is 0 (modulo 7). 

1

4

1

3

5 5 4 1

0

B: 4



Simplifying the problem even further:

Given a set B with elements from [0, 6], group them into 
as many groups as possible such that the sum of each 
group is 0 (modulo 7). 

1

4

1

3

5

5

4

1
0

B: 4



Simplifying the problem even further:

Given a set B with elements from [0, 6], group them into 
as many groups as possible such that the sum of each 
group is 0 (modulo 7). 

The solution is then N − number of groups = 10 - 4 = 6

1

4 1

3 5

41
0

45



To find the optimal grouping of numbers we start greedy:

1) As long as we have a zero in the set, make a group 
with a single zero in it.

2) As long as there is a pair of numbers that add up to 7 
(1 and 6, 2 and 5, 3 and 4), make a group with these two 
numbers in it.

At this point the numbers in our set come from a set of at 
most three distinct integers: no zeros, either ones or 
sixes, either twos or fives, either threes or fours.

There exists a greedy O(N) strategy we could follow, but 
it's rather hard to find. Instead we may use a O(N^3) 
dynamic programming to complete the assignment.



Problem I
Intrinsic Interval

Submits: 42
Accepted: at least 1

First solved by: Jagiellonian 1
Jagiellonian University in Krakow

(Hlembotskyi, Stokowacki, Zieliński)
02:10:47

Author: Gustav Matula



An interval of the permutation is a consecutive 
subsequence consisting of consecutive numbers.
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An interval of the permutation is a consecutive 
subsequence consisting of consecutive numbers.
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An interval of the permutation is a consecutive 
subsequence consisting of consecutive numbers.

For a given subsequence we need to find the shortest 
enclosing interval.
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An interval of the permutation is a consecutive 
subsequence consisting of consecutive numbers.

For a given subsequence we need to find the shortest 
enclosing interval.

To see how we could expand the subsequence into the 
shortest enclosing interval, let's visualize the permutation 
in two dimensions.



















With careful implementation of the algorithm, it is 
possible to expand a subsequence [a, b] to an enclosing 
interval [x, y] in O(|y - x| - |b - a|).

However, that's too slow for this problem.

Instead, we'll develop divide and conquer algorithm to 
answer all queries at once.

We initialize the result for each query with interval [1, n] 
and then we'll try to improve it.



Improve(queries, lo, hi) will try to improve each query in 
queries by considering intervals completely within [lo, hi] 
window.
Improve(queries, lo, hi):
  if lo == hi: return
  mid = (lo + hi) / 2
  Improve([q in queries where q.b <= mid], lo, mid)
  Improve([q in queries where q.a > mid], mid + 1, hi)
  ImproveViaMid(queries, lo, mid, hi)

ImproveViaMid considers all intervals that contain 
[mid, mid + 1], and are within the [lo, hi] to improve 
provided queries.

A query participates in O(log(N)) ImproveViaMid calls.



Starting from subsequence [mid, mid + 1], we expand it 
to the left, storing all intervals we encounter until we exit 
the [lo, hi] window.

lo=5 hi=24mid=14
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Starting from subsequence [mid, mid + 1], we expand it 
to the left, storing all intervals we encounter until we exit 
the [lo, hi] window.

Left intervals: [12, 15]



lo=5 hi=24mid=14

Starting from subsequence [mid, mid + 1], we expand it 
to the left, storing all intervals we encounter until we exit 
the [lo, hi] window.

Left intervals: [12, 15], [8, 17]
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Starting from subsequence [mid, mid + 1], we expand it 
to the left, storing all intervals we encounter until we exit 
the [lo, hi] window.

Left intervals: [12, 15], [8, 17], [6, 22]
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Again, starting from subsequence [mid, mid + 1], we 
expand it to the right, storing all intervals we encounter 
until we exit the [lo, hi] window.

Left intervals: [12, 15], [8, 17], [6, 22]
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Again, starting from subsequence [mid, mid + 1], we 
expand it to the right, storing all intervals we encounter 
until we exit the [lo, hi] window.

Left intervals: [12, 15], [8, 17], [6, 22]

Right intervals: [12, 15]



lo=5 hi=24mid=14

Again, starting from subsequence [mid, mid + 1], we 
expand it to the right, storing all intervals we encounter 
until we exit the [lo, hi] window.

Left intervals: [12, 15], [8, 17], [6, 22]

Right intervals: [12, 15], [12, 17]



lo=5 hi=24mid=14

Again, starting from subsequence [mid, mid + 1], we 
expand it to the right, storing all intervals we encounter 
until we exit the [lo, hi] window.

Left intervals: [12, 15], [8, 17], [6, 22]

Right intervals: [12, 15], [12, 17], [12, 22]



lo=5 hi=24mid=14

Finally, for each query [a, b] we find the smallest left 
interval that contains it and the smallest right interval that 
contains it. The union of these two intervals is the 
smallest interval within [lo, hi] that contains the query.

Left intervals: [12, 15], [8, 17], [6, 22]

Right intervals: [12, 15], [12, 17], [12, 22]



lo=5 hi=24

We can implement ImproveViaMid(queries, lo, mid, hi) in 
O(|hi - lo| + queries.size()), for overall complexity of 
O((N + Q) log N).

mid=14

Left intervals: [12, 15], [8, 17], [6, 22]

Right intervals: [12, 15], [12, 17], [12, 22]



Problem C
Cumulative Code

Submits: 2
Accepted: ?

Author: Ivan Paljak, Luka Kalinovčić
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3

6 7

Code:  2  2  1



3
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Code:  2  2  1  3



3

7

Code:  2  2  1  3  3



...

The removal order: left subtree, right subtree, root node.

Type A subtree



The removal order: left subtree, root node, right subtree.

Type B subtree

In the analysis we'll focus on type A trees only. Type B is 
dealt with the same way.



Let's start simple and find a recursive formula fx(k) to 
sum up the code generated by a type A subtree of depth 
k, where root is labeled with number x.

x

...

For k = 1, there is only a single node in the subtree.

As we remove it, we append (x div 2) to the code.

fx(1) = (x div 2)



Let's start simple and find a recursive formula fx(k) to 
sum up the code generated by a type A subtree of depth 
k, where root is labeled with number x.

...

fx(2) = x + x + (x div 2) = 2x + (x div 2)

2x

x

2x+1



Let's start simple and find a recursive formula fx(k) to 
sum up the code generated by a type A subtree of depth 
k, where root is labeled with number x.

fx(3) = 2x + 2x + x + 2x+1 + 2x+1 + x + (x div 2)

       = 10x + 2 + (x div 2)

...

4x+2

2x+1

4x+34x

2x

4x+1

x



In general, fx(k) = ak·x + bk + ck·(x div 2) and we can 
compute it recursively:

fx(k) = f2x(k−1) + f2x+1(k−1) + (x div 2)

f2x(k−1) = ak-1·2x + bk-1 + ck-1·(2x div 2)

= (2ak-1 + ck-1)x + bk-1 

f2x+1(k−1)= ak-1·(2x + 1) + bk-1 + ck-1·((2x + 1) div 2)

= (2ak-1 + ck-1)x + ak-1 + bk-1 

fx(k) = (4ak-1 + 2ck-1)x + ak-1 + 2bk-1 + (x div 2) 

ak = 4ak-1 + 2ck-1 bk = ak-1 + 2bk-1 ck = 1 



Now, let's come up with a formula that only sums up 
code elements at indices in the query

Q = {a, a + d, a + 2·d, ..., a + (m − 1)·d}.

Let nextQ(i) be the smallest index in Q greater than or 
equal to i.

Let gx(k, i) be the sum of elements at the required 
indices, given a subtree of depth k with root labeled x, 
and given that there are already i elements in the output 
code before we process the subtree.
gx(k, i) = g2x(k−1, i) + g2x+1(k−1, i + 2k−1 − 1)

+ ((i + 2k − 1) ∊ Q)·(x div 2)



The recursive formula we have is still summing elements 
one-by-one. We need to optimize it a bit.

1) If no index in [i + 1, i + 2k - 1] is in query Q, return 0 
immediately.

2) Memoize function calls where:

● k ≤ K/2 and
● [i + 1, i + 2k - 1] is entirely within the query interval 

[a, a + a + (m − 1)·d].

The key for the memoization is (k, nextQ(i) - i).

Because of 1), nextQ(i) ≤ i + 2k - 1, so we have O(2K/2) 
states to memoize.



The remaining cases where we don't return 0 or 
memoize are:

1) Cases for type B subtrees. There are only O(K) such 
function calls.

2) Cases with k > K/2. There are O(2K/2) function calls.

3) Cases where [i + 1, i + 2k - 1] intersects with the query 
interval [a, a + a + (m − 1)·d], but is not entirely within. 
There are only O(K) such function calls.

Overall complexity of the algorithm is O(2K/2) per query.



Problem E
Embedding Enumeration

Submits: 1
Accepted: ?

Author: Luka Kalinovčić



Problem: Given a tree, count the number of ways to 
embed it in a 2 by N grid, such that two nodes connected 
by an edge are adjacent in the grid. Node 1 has to be in 
top-left cell.
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Problem: Given a tree, count the number of ways to 
embed it in a 2 by N grid, such that two nodes connected 
by an edge are adjacent in the grid. Node 1 has to be in 
top-left cell.

1 3 7

25 6

4

9

8

Observation: When we root the tree at node 1, it has to 
be a binary tree. Otherwise, we have a node with degree 
greater than three, which can't be embedded.



Let's build a dynamic programming solution that 
enumerates all embeddings. We can describe the state 
as (x, delta).

At this state, we have embedded all nodes except for 
those in x's subtree. Node x is embedded at the last cell 
of the longer of the two rows, and the delta is the 
difference in length between the two rows.

x

delta



To make the transition, we'll try every possible 
assignment of node x's children to neighboring cells.

If assignment assigns a node y to a cell below x, we also 
try every possible assignment of y's children to 
neighboring cell.

Let's analyze possible outcomes of such assignments.

x

delta



Trivial case: x has no children. We've found one valid 
embedding.

x

delta



Node x has one child node y that was assigned to the 
right cell.

x

delta

y



Node x has one child node y that was assigned to the 
right cell.

We transition to state (y, delta + 1)

delta + 1

y



Node x has one child node y that was assigned to the 
bottom cell. We also assign y's children to neighboring 
cells.

x

delta

y



Node x has one child node y that was assigned to the 
bottom cell. We also assign y's children to neighboring 
cells.

If it there is a child node z assigned to the left, we know 
that its subtree has form a simple chain of length up to 
(delta - 1). Otherwise we can't make a valid embedding 
from this assignment.

x

delta

yz



Node x has one child node y that was assigned to the 
bottom cell. We also assign y's children to neighboring 
cells.

If it there is a child node v assigned to the right, we 
transition to state (v, 1).

x

delta

y v



Node x has one child node y that was assigned to the 
bottom cell. We also assign y's children to neighboring 
cells.

If it there is a child node v assigned to the right, we 
transition to state (v, 1).

delta

v



In the general case, x has two children y and u, and y 
has a child v assigned to the lower right cell.

We now have two nodes, u and v, whose subtrees are 
not yet embedded, so we can't transition to any simple 
state just yet.

x

delta

y v

u



We keep appending children to the right until one of the 
chain runs out of nodes (or we encounter a node with 
two children which would make this assignment invalid).

x

delta

y v

u

.

.



We keep appending children to the right until one of the 
chain runs out of nodes (or we encounter a node with 
two children which would make this assignment invalid).

x

delta

y v

u

.

.

.

.



We keep appending children to the right until one of the 
chain runs out of nodes (or we encounter a node with 
two children which would make this assignment invalid).

Once that happens, we can transition to state (f, 1).

x

delta

y v

u

.

.

.

.

f



There are O(N2) states, and it's possible to implement all 
transitions in O(1) with some precomputation.

To speed it up, let's try to fix delta at 1, and see what 
breaks.

The only case where we actually increase the delta is the 
one where node x has one child assigned to the right 
cell.

x y



Originally we would transition to state (y, 2), but what 
kinds of embeddings would we miss if we transitioned to 
(y, 1) instead?
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Originally we would transition to state (y, 2), but what 
kinds of embeddings would we miss if we transitioned to 
(y, 1) instead?

x y . z

. . . .
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Originally we would transition to state (y, 2), but what 
kinds of embeddings would we miss if we transitioned to 
(y, 1) instead?

We need to identify the node z in the subtree, and assign 
its neighbour, and verify that there is a chain of the right 
size going back all the way in the other row.

x y . z

. . . .

f



We've reduced the number of states to O(N) and with 
some careful programming and precomputation, all the 
transitions can be done in O(1), so the overall complexity 
is O(N).



Thanks!


