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Problem Statistics

Onsite (20 teams) Open (56 teams) Code Level
A 1 (287min) 5 (91min) 1263B Hard
B 1 (286min) 4 (192min) 1280B Hard
C 5 (136min) 2 (201min) 867B Medium
D 9 (94min) 18 (25min) 662B Medium
E 0 4 (157min) 912B Hard
F 12 (26min) 29 (4min) 413B Easy
G 3 (54min) 11 (32min) 311B Medium
H 0 6 (111min) 2058B Medium
I 20 (3min) 48 (1min) 51B Easy
J 15 (56min) 25 (16min) 944B Easy
K 0 4 (39min) 1043B Hard
L 12 (44min) 22 (37min) 705B Easy
1st Thinking Face (8/851) kjp86201 (12/1328)
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I. Repetitive Palindrome

• Solved by 20+48 team(s)

• First Solve: Ajou Strong Team (3:31)

• Open First Solve: dotorya (1:50)

• Tags: Ad-hoc

• Author: Minkyu Jo
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I. Repetitive Palindrome

• You are given a string s and an integer k .

• Is t = sss · · · ss︸ ︷︷ ︸
k copies

a palindrome?
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I. Repetitive Palindrome

• t = tR ⇐⇒ sss · · · ss︸ ︷︷ ︸
k copies

= (sss · · · ss︸ ︷︷ ︸
k copies

)R = sRsRsR · · · sRsR︸ ︷︷ ︸
k copies

• s and sR has same length!

• so t = tR ⇐⇒ s = sR

• Check whether s is palindrome in O(|s|) time.
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I. Repetitive Palindrome

• t = tR ⇐⇒ sss · · · ss︸ ︷︷ ︸
k copies

= (sss · · · ss︸ ︷︷ ︸
k copies
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F. Fractions

• Solved by 12+29 team(s)

• First Solve: Skai (26:48)

• Open First Solve: rkm0959 (4:21)

• Tags: Math

• Author: Suchan Park
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F. Fractions

• x
y
is a Suneung fraction iff it reduces to q

p
and

1 ≤ p + q ≤ 999 holds.

• Count the number of Suneung fraction x
y
where

A ≤ x ≤ B and C ≤ y ≤ D holds.



Stats I F L G J D C B A H K E

F. Fractions

• Instead, count the number of Suneung fractions x
y
where

1 ≤ x ≤ P and 1 ≤ y ≤ Q, f (P ,Q).

• Then, the answer is equivalent to:

f (B ,D)− f (A− 1,D)− f (B ,C − 1) + f (A− 1,C − 1)
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F. Fractions

• From p
q
(where p and q are coprime), the Suneung

fraction must be in the form of k·p
k·q for some positive k .

• 1 ≤ k · p ≤ P and 1 ≤ k · q ≤ Q must hold.

• The number of possible k is min
(⌊

P
p

⌋
,
⌊
Q
q

⌋)
.
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F. Fractions

• In conclusion,

f (P ,Q) =
∑

gcd(p,q)=1,1≤p+q≤999

min

(⌊
P

p

⌋
,

⌊
Q

q

⌋)

• The number of such p
q
should be something like ≤ 1 0002,

which is small enough to iterate.
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L. Voronoi Diagram Returns

• Solved by 12+22 team(s)

• First Solve: Thinking Face (44:23)

• Open First Solve: 789 (37:52)

• Tags: Implementation

• Author: Hanpil Kang
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L. Voronoi Diagram Returns

• You are given n points.

• Construct Voronoi Diagram and answer point query
problem.
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L. Voronoi Diagram Returns

• Is it really mandatory to construct Voronoi Diagram?
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L. Voronoi Diagram Returns

• A point K is included in region i if and only if
d(Pi ,K ) ≤ d(Pj ,K ) holds for all 1 ≤ j ≤ n.

• i. e., d(Pi ,K ) = min1≤j≤n d(Pj ,K )

• You can use the definition directly to test whether the
point is in the region or not!

• Time Complexity: O(qn).
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L. Voronoi Diagram Returns

• A point K is included in region i if and only if
d(Pi ,K ) ≤ d(Pj ,K ) holds for all 1 ≤ j ≤ n.

• i. e., d(Pi ,K ) = min1≤j≤n d(Pj ,K )
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G. Game on Plane

• Solved by 3+11 team(s)

• First Solve: Thinking Face (54:16)

• Open First Solve: 789 (32:52)

• Tags: Games, DP

• Author: Jongwon Lee
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G. Game on Plane

• If you draw a segment that meets a previously drawn
segment at the endpoints, then your opponent can
immediately draw a triangle and you will lose.

• On the other hand, if no two of the drawn segments do
not meet, then the next player cannot end the game.

• Therefore, the game can be interpreted as a game
drawing segment where the new segment must not touch
any of the previously drawn segments at the endpoint.
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• If you draw a segment that meets a previously drawn
segment at the endpoints, then your opponent can
immediately draw a triangle and you will lose.

• On the other hand, if no two of the drawn segments do
not meet, then the next player cannot end the game.

• Therefore, the game can be interpreted as a game
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G. Game on Plane

• If you draw a line segment separating the n points into i ,
n − 2− i points respectively, then the game is now
equivalent to playing on two sets of points with i ,
n − 2− i points respectively.

• Therefore, the grundy number of the game can be
computed by the following recurrence

f (n) = min
k∈Z≥0

{k 6= f (i) XOR f (n − 2− i) for all i}
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J. Rising Sun

• Solved by 15+25 team(s)

• First Solve: Kkeujeok Kkeujeok (56:16)

• Open First Solve: 1207koo (16:56)

• Tags: Geometry, Implementation

• Author: Joonhyung Shin
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J. Rising Sun

• For each mountain, consider the ray starting from Joon’s
house that passes through the summit of the mountain.
Call it summit ray.



Stats I F L G J D C B A H K E

J. Rising Sun

• For each mountain, consider the ray starting from Joon’s
house that passes through the summit of the mountain.
Call it summit ray.



Stats I F L G J D C B A H K E

J. Rising Sun

• Joon can see the sun if and only if for each summit that
is in strictly left of Joon’s house, the summit ray meets
the y -axis below the sun.
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J. Rising Sun

• Let (xi , yi) be the positions of the summits in the left side
of Joon’s house which is at (a, b).

• Using the straight line equation, the answer to the
problem is

max

{
max

i

⌈
b − yi − b

xi − a
· a
⌉
, 0
}
.

• Be careful of overflow!

• Time complexity: O(n)
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D. Fake Plastic Trees

• Solved by 9+18 team(s)

• First Solve: Thinking Face (94:59)

• Open First Solve: 789 (25:19)

• Tags: Math, Constructive

• Author: Jaehyun Koo
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D. Fake Plastic Trees

• You should store N-node tree in O(logN) memory.

• And you should show off your memory, to prove your
construction.

• This setting is quite non-standard, but don’t panic!



Stats I F L G J D C B A H K E

D. Fake Plastic Trees

• You should store N-node tree in O(logN) memory.

• And you should show off your memory, to prove your
construction.

• This setting is quite non-standard, but don’t panic!



Stats I F L G J D C B A H K E

D. Fake Plastic Trees

• You should store N-node tree in O(logN) memory.

• And you should show off your memory, to prove your
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• This setting is quite non-standard, but don’t panic!
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D. Fake Plastic Trees

• Fake Plastic Trees are recursive, so the solution is.

• Let’s take the top-down way: We need a tree with N
leaves.

• We recursively make two trees with dN/2e, bN/2c leaves.

• Then, we just add one node as a parent of two trees.

• V = Ω(N).
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• Fake Plastic Trees are recursive, so the solution is.

• Let’s take the top-down way: We need a tree with N
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• We recursively make two trees with dN/2e, bN/2c leaves.
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D. Fake Plastic Trees

• Let’s seek some more improvement.

• If N is even, We don’t have to make two different trees,
one N/2-size tree is enough.

• Unfortunately, this is just a constant optimization.

• V = Ω(N) still remains.

• No. Actually V = Ω(N0.69). Do you see why?
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• Let’s seek some more improvement.

• If N is even, We don’t have to make two different trees,
one N/2-size tree is enough.

• Unfortunately, this is just a constant optimization.

• V = Ω(N) still remains.

• No. Actually V = Ω(N0.69). Do you see why?



Stats I F L G J D C B A H K E

D. Fake Plastic Trees

• Nonetheless, Ω(N0.69) is still bad. But we had some
significant observation: Only odd N needs two childs.

• Let N = 2K + 1, then it needs two child with K + 1 and
K leaves.

• One of {K + 1,K} will be even, so they won’t branch.

• The other will branch, and again, one of their child is
even!

• If we carefully follow their traces, we might only need
2 log2(N) + 2 nodes.



Stats I F L G J D C B A H K E

D. Fake Plastic Trees

• Nonetheless, Ω(N0.69) is still bad. But we had some
significant observation: Only odd N needs two childs.

• Let N = 2K + 1, then it needs two child with K + 1 and
K leaves.

• One of {K + 1,K} will be even, so they won’t branch.

• The other will branch, and again, one of their child is
even!

• If we carefully follow their traces, we might only need
2 log2(N) + 2 nodes.



Stats I F L G J D C B A H K E

D. Fake Plastic Trees

• Nonetheless, Ω(N0.69) is still bad. But we had some
significant observation: Only odd N needs two childs.

• Let N = 2K + 1, then it needs two child with K + 1 and
K leaves.

• One of {K + 1,K} will be even, so they won’t branch.

• The other will branch, and again, one of their child is
even!

• If we carefully follow their traces, we might only need
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D. Fake Plastic Trees

• Let f (n) be a function that returns a pair of FPT: One
with size n + 1, the other with size n.

• f (1) is easy, and we need two nodes for it.

• For even 2k ≥ 2, we need to build two FPT with size
2k + 1, 2k . You need two FPT with size k + 1, k .

• For odd 2k + 1 ≥ 2, we need to build two FPT with size
2k + 2, 2k + 1. You need two FPT with size k + 1, k .

• In any case, you only need f (n/2). V ≤ 2 log2(N) + 2.
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D. Fake Plastic Trees

• Let f (n) be a function that returns a pair of FPT: One
with size n + 1, the other with size n.

• f (1) is easy, and we need two nodes for it.

• For even 2k ≥ 2, we need to build two FPT with size
2k + 1, 2k . You need two FPT with size k + 1, k .

• For odd 2k + 1 ≥ 2, we need to build two FPT with size
2k + 2, 2k + 1. You need two FPT with size k + 1, k .

• In any case, you only need f (n/2). V ≤ 2 log2(N) + 2.
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C. Electronic Circuit

• Solved by 5+2 team(s)

• First Solve: Thinking Face (136:10)

• Open First Solve: kjp86201 (201:28)

• Tags: Graph

• Author: Joonhyung Shin
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C. Electronic Circuit
• The key of this problem is to take a closer look at ‘nice’
circuits.

• One may see that at least one of the following is true for
nice circuits.

1. It consists of a single wire connecting two nodes.
2. It contains a node which is directly connected to exactly

two nodes.
3. It contains multiple wires connecting the same two nodes.

• • •

•
2

3
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C. Electronic Circuit

• Moreover, smoothing a node (removing the node and
combining the attached wires into one) in Case 2 or
removing extra wires in Case 3 does not violate ‘nice
property’.

• • •

•

Case 2

• • •

Case 3

• • •

•
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C. Electronic Circuit

• These two actions both reduce the number of
wires, which means that repeating this process, a nice
circuit will eventually become a single wire with two
nodes (Case 1).

• In fact, one can prove by induction that the circuit is nice
if and only if it reduces to Case 1 after applying this
process repeatedly.

• This can be implemented efficiently by maintaining
adjacency list with set in C++ or TreeSet in Java.

• Time complexity: O(m + n log n)
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C. Electronic Circuit

• These two actions both reduce the number of
wires, which means that repeating this process, a nice
circuit will eventually become a single wire with two
nodes (Case 1).

• In fact, one can prove by induction that the circuit is nice
if and only if it reduces to Case 1 after applying this
process repeatedly.

• This can be implemented efficiently by maintaining
adjacency list with set in C++ or TreeSet in Java.

• Time complexity: O(m + n log n)
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B. Dumae

• Solved by 1+4 team(s)

• First Solve: Thinking Face (286:39)

• Open First Solve: 789 (192:17)

• Tags: Graph, Greedy, DP

• Author: Sunghyeon Jo (Seoul National Univ)
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B. Dumae

• Goal : Find a permutation p1, ..., pn which satisfies
Li ≤ pi ≤ Ri , pui < pvi

• Inverse of the permutation p is an answer of the problem.
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B. Dumae

• Directed graph
G = (V ,E ),V = {1, 2, .., n} ,E = {(ui , vi) | 1 ≤ i ≤ n}

• If G is not a DAG, then solution does not exist.
• Now we assume G to be DAG.
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B. Dumae

• If there is a condition px < py , then we can replace Ly as
max(Ly , Lx + 1).

• In the same manner, we can replace Rx as
max(Rx ,Ry − 1).

• This doesn’t change the validity of any solution.
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B. Dumae

• By scanning in increasing topological order of G , we can
update Li to satisfy all above condition.

• Do the same for Ri .
• Then we can find a ’tighter interval’ of pi .
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B. Dumae

• After finding a ’tighter interval’, we can completely ignore
the topological order!

• We can use the standard "deadline first" greedy algorithm
for matching intervals with numbers.

• We match each number x ∈ {1, · · · ,N} in increasing
order of x .

• Among all interval that contains x , choose one that have
minimum endpoint.

• Remove the matched interval.
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B. Dumae

• After finding a ’tighter interval’, we can completely ignore
the topological order!

• We can use the standard "deadline first" greedy algorithm
for matching intervals with numbers.

• We match each number x ∈ {1, · · · ,N} in increasing
order of x .

• Among all interval that contains x , choose one that have
minimum endpoint.

• Remove the matched interval.
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B. Dumae

• The proof of this greedy algorithm is done with standard
"exchange argument".

• Then, why can we ignore the topological order?

• For each edge (u, v) ∈ E , Lu < Lv and Ru < Rv holds
after the ’scanning procedure’.

• u is always chosen before v in above greedy procedure.
• Therefore, any matching found by above greedy satisfies
pu < pv for all (u, v) ∈ E .
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B. Dumae

• The proof of this greedy algorithm is done with standard
"exchange argument".

• Then, why can we ignore the topological order?
• For each edge (u, v) ∈ E , Lu < Lv and Ru < Rv holds
after the ’scanning procedure’.

• u is always chosen before v in above greedy procedure.
• Therefore, any matching found by above greedy satisfies
pu < pv for all (u, v) ∈ E .
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A. Coloring Roads

• Solved by 1+5 team(s)

• First Solve: Deobureo Minkyu Party (287:35)

• Open First Solve: 789 (91:13)

• Tags: Data Structures, Tree

• Author: Jongwon Lee
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A. Coloring Roads

• Translate the problem into graph theoretical terms, so
that we are coloring the edges of a rooted tree.

• Suppose that the color is different for each query.
• For each color c , we shall keep track of the vertex topc
which is the topmost (closest to the root) vertex incident
on an edge with color c .

• With this information the answer to the query can be
easily computed by precomputing the depth of each
vertex.



Stats I F L G J D C B A H K E

A. Coloring Roads

• Translate the problem into graph theoretical terms, so
that we are coloring the edges of a rooted tree.

• Suppose that the color is different for each query.
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• With this information the answer to the query can be
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A. Coloring Roads

• Also, the color of some edge is the color of the most
recent query applied to one of the vertices of its subtree.

• This can be computed in O(log n) time by maintaining a
segment tree of the vertices in dfs order.
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A. Coloring Roads

• Suppose there are k colors from the path from u to the
root, say c1, . . . , ck .
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A. Coloring Roads

• First, traverse up from u until you meet the first color, c1.

• Change topc1 to the appropriate vertex and jump to the
previous value of the topc1 where you can meet the next
color c2.
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• Change topc1 to the appropriate vertex and jump to the
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color c2.
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A. Coloring Roads

• Continue this until you reach the root.
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A. Coloring Roads

It might seem that this solution is slow at first sight, but we
shall prove that this indeed works.

To analyze the time complexity, note that we have two parts:
1. traversing up until we meet the first colored edge,
2. traversing the colored edges.

The total time of the first part can be done in O(n log n) time
since each edge appears at most once in this process, and
never appears again after it gets a color.
The second part takes O(k log n) time per query where k is
the number of colors you meet in that query. We shall show
that the sum of k for all queries is bounded by
O((n + q) log(n + q)) so that the time complexity in total is
O((n + q) log2(n + q)).
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A. Coloring Roads

• Since k , for each query, is the number of colors c such
that topc changes, the sum of all k is equal to the sum
of, for each vertex u, the number of times when u
becomes the top vertex of a color.

• For the time being, assume that the queries were applied
on different vertices.
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A. Coloring Roads

• For each edge e under u, it becomes the top edge of a
color when a query is applied to a vertex in the subtree of
e and some time later a query is applied to a vertex in the
subtree of u but not in the subtree of e. (See the figure)
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A. Coloring Roads

• The number of such events would be bounded by

min(subtree of e, subtree of u minus that of e)
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A. Coloring Roads

• Suppose that u has m children and let the size of the
subtree of each be s1, . . . , sm in the increasing order. Let
S = s1 + · · ·+ sm + 1 be the size of the subtree of u.

• Then, the number of times u becomes the top is bounded
by

min(s1, S − s1) + · · ·+ min(sm, S − sm)

≤ s1 + · · ·+ sm−1 + S − sm = 2 ∗ (S − sm)− 1



Stats I F L G J D C B A H K E

A. Coloring Roads

• It can be proven that the sum of such number for all
vertices is O(n log n). (Compare heavy-light
decomposition)

• For the case where queries can be applied to the same
vertex many times, add one children to the vertex for each
query applied on it, then the proof above applies again.

• Finally, only the final computation of the answers changes
slightly if we allow multiple queries to have the same
color.
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A. Coloring Roads

• Extra challenge: Solve this problem in O(n + q log(n)).
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H. Histogram Sequence

• Solved by 0+6 team(s)

• No solve in onsite contest.

• Open First Solve: 789 (111:07)

• Tags: Binary Search, Data Structure

• Author: Suchan Park
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H. Histogram Sequence

• What if we are to only compute Ak?

• It is tempting to use the classical binary search on answer
technique

• Define f (x) as the number of elements of A less than or
equal to x

• f is a monotonically increasing function
• f (Ak − 1) < k ≤ f (Ak) holds
• Find minimum m where f (m) ≥ k , then Ak = m
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H. Histogram Sequence

• What if we are to only compute Ak?
• It is tempting to use the classical binary search on answer
technique

• Define f (x) as the number of elements of A less than or
equal to x

• f is a monotonically increasing function
• f (Ak − 1) < k ≤ f (Ak) holds
• Find minimum m where f (m) ≥ k , then Ak = m
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H. Histogram Sequence

• How to compute f (x) efficiently?

• By definition, f (x) equals to the number of rectangles
whose area ≤ x

• If we fix the height h, we have to count the number of
rectangles whose width ≤ b x

h
c

• Goal: compute the number of rectangles with height
exactly h, and width exactly 1, 2, · · · , b xhc.
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H. Histogram Sequence

• How to compute f (x) efficiently?
• By definition, f (x) equals to the number of rectangles
whose area ≤ x

• If we fix the height h, we have to count the number of
rectangles whose width ≤ b x

h
c

• Goal: compute the number of rectangles with height
exactly h, and width exactly 1, 2, · · · , b xhc.
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H. Histogram Sequence

h

We may assume h is the minimum height among all bars.

For all other heights h′ (> h), we can use a stack to find the
maximal interval [l , r ] of H , where minl≤i≤r H[i ] ≥ h, and solve
the same problem. (Google ‘largest rectangle in histogram’)
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H. Histogram Sequence

h

h′

We may assume h is the minimum height among all bars.
For all other heights h′ (> h), we can use a stack to find the
maximal interval [l , r ] of H , where minl≤i≤r H[i ] ≥ h, and solve
the same problem. (Google ‘largest rectangle in histogram’)



Stats I F L G J D C B A H K E

H. Histogram Sequence

h

When does the height of the rectangle made by [i , j ] equal h?

→ Since h is the minimum height, at least one of
Hi ,Hi+1, · · · ,Hj should be h.
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H. Histogram Sequence

h

When does the height of the rectangle made by [i , j ] equal h?
→ Since h is the minimum height, at least one of
Hi ,Hi+1, · · · ,Hj should be h.
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H. Histogram Sequence

h

Mark all bars whose height is exactly h.

For [i , j ] to have height exactly h, the interval should touch at
least one of the marked bars.
For [i , j ] to NOT have height exactly h, the interval should
touch NO marked positions.
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H. Histogram Sequence
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touch NO marked positions.
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H. Histogram Sequence

h

Mark all bars whose height is exactly h.
For [i , j ] to have height exactly h, the interval should touch at
least one of the marked bars.
For [i , j ] to NOT have height exactly h, the interval should
touch NO marked positions.
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H. Histogram Sequence

h

For [i , j ] to NOT have height exactly h, the interval should be
entirely contained in one of the unmarked areas.

This seems easier to deal with! With this observation, let’s com-
pute the number of rectangles with height exactly h, and width
exactly 1, 2, · · · , b x

h
c.
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H. Histogram Sequence

h

For [i , j ] to NOT have height exactly h, the interval should be
entirely contained in one of the unmarked areas.
This seems easier to deal with! With this observation, let’s com-
pute the number of rectangles with height exactly h, and width
exactly 1, 2, · · · , b x

h
c.
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H. Histogram Sequence

h

The number of rectangles of width i is obviously n − i + 1.
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H. Histogram Sequence

h

The number of rectangles of width i whose height is NOT h
is..

just as same as the case we’ve seen before!∑
l

max(l − i + 1, 0)
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H. Histogram Sequence

h

l1 l2 l3

The number of rectangles of width i whose height is NOT h
is.. just as same as the case we’ve seen before!∑

l

max(l − i + 1, 0)
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H. Histogram Sequence

h

l1 l2 l3

In conclusion, the number of rectangles of width i , whose height
is exactly h, is:

(n − i + 1)−
∑
l

max(l − i + 1, 0)
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H. Histogram Sequence

h
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H. Histogram Sequence

Let m = b x
h
c, then effectively we need to compute

m∑
i=1

{
(n − i + 1)−

∑
l

max(l − i + 1, 0)

}

=
m∑
i=1

(n − i + 1)−
∑
l

m∑
i=1

max(l − i + 1, 0)

= sum1(n −m + 1, n)−
∑
l

sum1 (max(l −m + 1, 0), l)

where sum1(p, q) =
∑q

t=p t.
The total number of “uncovered areas” for all h is O(n), so it
takes only O(n) time to compute f (x).
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H. Histogram Sequence

Let m = b x
h
c, then effectively we need to compute

m∑
i=1

{
(n − i + 1)−

∑
l

max(l − i + 1, 0)

}

=
m∑
i=1

(n − i + 1)−
∑
l

m∑
i=1

max(l − i + 1, 0)

= sum1(n −m + 1, n)−
∑
l

sum1 (max(l −m + 1, 0), l)

where sum1(p, q) =
∑q

t=p t.
The total number of “uncovered areas” for all h is O(n), so it
takes only O(n) time to compute f (x).



Stats I F L G J D C B A H K E

H. Histogram Sequence

So far, we were able to compute AL in O(n log maxanswer)
time.

What about AL+1, · · · ,AR?
WLOG assume L = f (AL), so that AL+1 6= AL. We can do this
by printing ‘AL’ f (AL)− L times.
If we fix h, we considered all rectangles with width ≤ bAL

h
c.

The smallest rectangle we didn’t cover has width bAL

h
c+ 1.



Stats I F L G J D C B A H K E

H. Histogram Sequence

So far, we were able to compute AL in O(n log maxanswer)
time. What about AL+1, · · · ,AR?

WLOG assume L = f (AL), so that AL+1 6= AL. We can do this
by printing ‘AL’ f (AL)− L times.
If we fix h, we considered all rectangles with width ≤ bAL

h
c.

The smallest rectangle we didn’t cover has width bAL

h
c+ 1.



Stats I F L G J D C B A H K E

H. Histogram Sequence

So far, we were able to compute AL in O(n log maxanswer)
time. What about AL+1, · · · ,AR?
WLOG assume L = f (AL), so that AL+1 6= AL. We can do this
by printing ‘AL’ f (AL)− L times.

If we fix h, we considered all rectangles with width ≤ bAL

h
c.

The smallest rectangle we didn’t cover has width bAL

h
c+ 1.



Stats I F L G J D C B A H K E
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H. Histogram Sequence
Given AL, how to compute AL+1, · · · ,AR?
First, for all h, push

((
bAL

h
c+ 1

)
· h, h

)
to a min heap. Then,

repeat the following:

1. Pop the smallest element (a′, h′) from the heap.
2. With the formula in the previous slides, we can compute

c , the number of rectangles with height h′ and width
a′/h′.

3. Print a′ c times.
4. Push (a′ + h′, h′) to the min heap.

Step 2 might take O(n) time, but the total number of
summations seems to be O(n

√
n) with a small constant, so

this works. However, we can make Step 2 work in O(log n) or
amortized O(1) with some preprocessing.
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K. Utilitarianism

• Solved by 0+4 team(s)

• No solve in onsite contest.

• Open First Solve: kjp86201 (39:05)

• Tags: DP, Binary Search

• Author: Jongwon Lee
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K. Utilitarianism

A subset of edges of a graph such that no two edges are
adjacent is called a matching. In this problem, given a tree,
our goal is to choose a matching of size k which maximizes
the weight.
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K. Utilitarianism

• First, consider the problem where you have to find the
size of matching which maximizes the weight with no a
priori constraint on the size of the matching. Call this
problem K2

• This problem can be solved by a simple depth first search.
Precisely, set any node as the root node, and for each
node u, find the maximum weighted matching’s
weight/size of its subtree, distinguishing the cases

1. u is included in the matching
2. u is not included in the matching

• It is easy to compute the above values for a node using
its children’s results.
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• It is easy to compute the above values for a node using
its children’s results.
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K. Utilitarianism

• Suppose you add a constant X to the weight of each
edge and solve problem K2 on this graph.

• If X is super big(∞), then the output of problem K2
would be the size of maximum matching possible,

• and if X is super small(−∞), then the output of problem
K2 would be zero.

• The output of problem K2 increases when X increases.
Therefore, one can binary search on X and solve problem
K2 to find X such that the output of problem K2 is
exactly k .
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K. Utilitarianism

This was the general idea of the solution. In reality one should
be more careful since
1. There might be many answers to K2.
2. There might be no X such that the output of K2 is

exactly k .
To overcome the first issue, let the output of K2 be the
maximum if there are multiple answers.
Now define f (y) as the answer to the problem when k = y .
The important observation is that f (y) is a concave function
on y , i.e.

f (y)− f (y − 1) ≥ f (y + 1)− f (y) ∀y
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K. Utilitarianism

• To see why f (y) is concave, observe that this problem
can be modeled as a min-cost max-flow problem by
negating all the costs.

• In the algorithm for solving mcmf using Dijkstra, as an
extension of Edmonds-Karp algorithm, the distance from
the sink to source increases every iteration, which actually
is the whole point of Edmonds-Karp algorithm.

• In the algorithm, this distance equals the change of the
minimal cost when the flow increases by 1.

• This implies, in our situation, that the difference
f (y + 1)− f (y) decreases as y increases (since we have
negated all the costs).
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K. Utilitarianism

Back to our problem, note that the output of K2 is y where
f (y) + yX becomes maximum, and this is exactly where the
line with slope −X touches the graph of f (y) tangently.
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K. Utilitarianism

Find the smallest X among the ones that the output of K2 is
at least k . In the above figure, the output of K2 for such X
would be `.
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K. Utilitarianism

Note that f (k) + kX = f (`) + `X . Since f (`) + `X is the
maximum weight you can obtain from K2, the final answer is
that value minus kX .
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E. Fascination Street

• Solved by 0+4 team(s)

• No solve in onsite contest.

• Open First Solve: kjp86201 (157:09)

• Tags: DP

• Author: Jaehyun Koo
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E. Fascination Street

• Assume K = 0.

• This is a standard DP exercise, where DP[i ][j ] =
(minimum cost to place the streetlight in [1, i ] blocks,
where your rightmost streetlight lies in position j).

• i − j ≤ 2 should hold. Thus, this DP requires only O(N)
states. We have O(N) time solution.

• Wait, you can’t assume K = 0...
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E. Fascination Street

• ...but K is very small, smells like some exhaustive search..

• No! N is too large to make this work :(
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E. Fascination Street

• We fix the subset of location that will cover the street in
the end.

• If K = 0, the minimum cost is simply the sum of Wi in
the subset.

• If K > 0, we should swap wisely to minimize the cost.

• This is easy: We just swap the largest Wi in subset, with
the smallest Wi not in subset.
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E. Fascination Street

• For K > 0, let S(≤ K ) be the number of swaps we’ve
done.

• We drop the top-S elements in the location set, and
obtain the bottom-S elements not in the location set.

• If we are doing some kind of DP, then we should take
account of those top-S element (and vice versa).

• It seems pretty complicated.
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E. Fascination Street

• But should we really care about top-S elements?

• We can just drop any S element in set, and obtain any
S element not in set.

• If we do the DP well, the optimality is guaranteed anyway.



Stats I F L G J D C B A H K E

E. Fascination Street

• But should we really care about top-S elements?

• We can just drop any S element in set, and obtain any
S element not in set.

• If we do the DP well, the optimality is guaranteed anyway.



Stats I F L G J D C B A H K E

E. Fascination Street

• But should we really care about top-S elements?

• We can just drop any S element in set, and obtain any
S element not in set.

• If we do the DP well, the optimality is guaranteed anyway.



Stats I F L G J D C B A H K E

E. Fascination Street

• Long story short, we should find a partition of streetlight
into those four sets:

1. It is in the location subset, and it’s not dropped.
2. It is in the location subset, and it’s dropped.
3. It is not in the location subset, and it’s obtained.
4. It is not in the location subset, and it’s not obtained.

• Location subset should cover the whole street.

• The size of Case 2 / 3 should remain same, and should be
at most K .
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E. Fascination Street

• To do this, you can add size of dropped ones, size of
obtained ones in the DP states.

• Just add two or three for/if statement. You are done :D

• Time complexity is O(NK 2).

• Memory complexity is O(K 2). Our limits were lenient,
thus O(NK 2) also passes easily.
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