
A B C D E F G H I J

Long Contest Editorial
March 27, 2016

by Mikhail Tikhomirov (MIPT)

Moscow Pre-Finals ACM ICPC Workshop, MIPT, 2016

A B C D E F G H I J

A. As Easy As Possible

For a given string s, answer several queries of the form “find
maximal k such that easy...easy (k times) is a subsequence of
s[l . . . r]”.

It is easy to answer a single query in O(n) time.
In fact, we will find the longest prefix of the infinite string (easy)*
(infinite repeats of easy) which is a subsequence of the substring t:
start with the empty prefix, iterate over characters of t and increase
the length of the prefix whenever the current character of t
matches the next character of (easy)*.

A B C D E F G H I J

A. As Easy As Possible

For a given string s, answer several queries of the form “find
maximal k such that easy...easy (k times) is a subsequence of
s[l . . . r]”.
It is easy to answer a single query in O(n) time.

In fact, we will find the longest prefix of the infinite string (easy)*
(infinite repeats of easy) which is a subsequence of the substring t:
start with the empty prefix, iterate over characters of t and increase
the length of the prefix whenever the current character of t
matches the next character of (easy)*.

A B C D E F G H I J

A. As Easy As Possible

For a given string s, answer several queries of the form “find
maximal k such that easy...easy (k times) is a subsequence of
s[l . . . r]”.
It is easy to answer a single query in O(n) time.
In fact, we will find the longest prefix of the infinite string (easy)*
(infinite repeats of easy) which is a subsequence of the substring t:
start with the empty prefix, iterate over characters of t and increase
the length of the prefix whenever the current character of t
matches the next character of (easy)*.

A B C D E F G H I J

A. As Easy As Possible

How do we answer a query fast?

Let us use the “binary shift” approach: for a substring [l ; r], divide
the range [l ; r] into O(log n) parts with powers of 2 as lengths, and
combine the answer from precomputed information for the parts.
Which information do we have to precompute? For the current
part, we would like to know how much the current prefix can be
extended.
Since (easy)* is periodical, it suffices to know the next character
of easy to match with. Thus, we precompute ak,i ,j — how much
the prefix can be extended inside the substring s[i ...i + 2k) if the
current character to match is easy[j].

A B C D E F G H I J

A. As Easy As Possible

How do we answer a query fast?
Let us use the “binary shift” approach: for a substring [l ; r], divide
the range [l ; r] into O(log n) parts with powers of 2 as lengths, and
combine the answer from precomputed information for the parts.

Which information do we have to precompute? For the current
part, we would like to know how much the current prefix can be
extended.
Since (easy)* is periodical, it suffices to know the next character
of easy to match with. Thus, we precompute ak,i ,j — how much
the prefix can be extended inside the substring s[i ...i + 2k) if the
current character to match is easy[j].

A B C D E F G H I J

A. As Easy As Possible

How do we answer a query fast?
Let us use the “binary shift” approach: for a substring [l ; r], divide
the range [l ; r] into O(log n) parts with powers of 2 as lengths, and
combine the answer from precomputed information for the parts.
Which information do we have to precompute? For the current
part, we would like to know how much the current prefix can be
extended.

Since (easy)* is periodical, it suffices to know the next character
of easy to match with. Thus, we precompute ak,i ,j — how much
the prefix can be extended inside the substring s[i ...i + 2k) if the
current character to match is easy[j].

A B C D E F G H I J

A. As Easy As Possible

How do we answer a query fast?
Let us use the “binary shift” approach: for a substring [l ; r], divide
the range [l ; r] into O(log n) parts with powers of 2 as lengths, and
combine the answer from precomputed information for the parts.
Which information do we have to precompute? For the current
part, we would like to know how much the current prefix can be
extended.
Since (easy)* is periodical, it suffices to know the next character
of easy to match with. Thus, we precompute ak,i ,j — how much
the prefix can be extended inside the substring s[i ...i + 2k) if the
current character to match is easy[j].

A B C D E F G H I J

A. As Easy As Possible

Time and memory needed to precompute O(nm log n), where
n = |s|, m = |easy|. It is then possible to answer a query in
O(log n) time, for the total O((q + nm) log n) time complexity.

There is also a similar approach with a segment tree, with the same
time complexity and slightly less memory usage.

A B C D E F G H I J

A. As Easy As Possible

Time and memory needed to precompute O(nm log n), where
n = |s|, m = |easy|. It is then possible to answer a query in
O(log n) time, for the total O((q + nm) log n) time complexity.
There is also a similar approach with a segment tree, with the same
time complexity and slightly less memory usage.

A B C D E F G H I J

B. Be Friends

Define distance between integers as their XOR. Find the weight of
MST on a set of integers.

We will assume that all numbers are distinct since we can erase all
duplicates.

A B C D E F G H I J

B. Be Friends

Define distance between integers as their XOR. Find the weight of
MST on a set of integers.
We will assume that all numbers are distinct since we can erase all
duplicates.

A B C D E F G H I J

B. Be Friends

Let k be the position of the greatest binary digit in every number.

Proposition
There will be at most one edge in MST with 1 in k ’th digit of XOR.

This hints at the recursive approach: divide all numbers into two
groups according to their k ’th digit, solve recursively for these
groups, then add minimal possible edge between the groups.

A B C D E F G H I J

B. Be Friends

Let k be the position of the greatest binary digit in every number.

Proposition
There will be at most one edge in MST with 1 in k ’th digit of XOR.

This hints at the recursive approach: divide all numbers into two
groups according to their k ’th digit, solve recursively for these
groups, then add minimal possible edge between the groups.

A B C D E F G H I J

B. Be Friends

Let k be the position of the greatest binary digit in every number.

Proposition
There will be at most one edge in MST with 1 in k ’th digit of XOR.

This hints at the recursive approach: divide all numbers into two
groups according to their k ’th digit, solve recursively for these
groups, then add minimal possible edge between the groups.

A B C D E F G H I J

B. Be Friends

How do we find the minimal edge between the groups?

We will find the trie structure useful. The question asks about
minimal XOR between integers in two subtrees of a trie.
We will use a greedy approach. Do parallel DFS of the subtrees.
When we descend into a child of the first vertex, choose a child of
the second vertex that minimizes XOR in the current digit (if
possible). For each pair of leaves reached, try to improve the
answer with their XOR. Clearly, an optimal answer will be found at
some leaves pair.

A B C D E F G H I J

B. Be Friends

How do we find the minimal edge between the groups?
We will find the trie structure useful. The question asks about
minimal XOR between integers in two subtrees of a trie.

We will use a greedy approach. Do parallel DFS of the subtrees.
When we descend into a child of the first vertex, choose a child of
the second vertex that minimizes XOR in the current digit (if
possible). For each pair of leaves reached, try to improve the
answer with their XOR. Clearly, an optimal answer will be found at
some leaves pair.

A B C D E F G H I J

B. Be Friends

How do we find the minimal edge between the groups?
We will find the trie structure useful. The question asks about
minimal XOR between integers in two subtrees of a trie.
We will use a greedy approach.

Do parallel DFS of the subtrees.
When we descend into a child of the first vertex, choose a child of
the second vertex that minimizes XOR in the current digit (if
possible). For each pair of leaves reached, try to improve the
answer with their XOR. Clearly, an optimal answer will be found at
some leaves pair.

A B C D E F G H I J

B. Be Friends

How do we find the minimal edge between the groups?
We will find the trie structure useful. The question asks about
minimal XOR between integers in two subtrees of a trie.
We will use a greedy approach. Do parallel DFS of the subtrees.
When we descend into a child of the first vertex, choose a child of
the second vertex that minimizes XOR in the current digit (if
possible).

For each pair of leaves reached, try to improve the
answer with their XOR. Clearly, an optimal answer will be found at
some leaves pair.

A B C D E F G H I J

B. Be Friends

How do we find the minimal edge between the groups?
We will find the trie structure useful. The question asks about
minimal XOR between integers in two subtrees of a trie.
We will use a greedy approach. Do parallel DFS of the subtrees.
When we descend into a child of the first vertex, choose a child of
the second vertex that minimizes XOR in the current digit (if
possible). For each pair of leaves reached, try to improve the
answer with their XOR. Clearly, an optimal answer will be found at
some leaves pair.

A B C D E F G H I J

B. Be Friends

How fast does this work?

The parallel DFS works in O(w1 + w2), where w1 and w2 are sizes
of corresponding subtrees (it can even be made O(min(w1,w2))).
Each vertex of the trie is present in at most k + 1 subtrees, so total
complexity is O(k2n) since there are O(kn) vertices in the trie.

A B C D E F G H I J

B. Be Friends

How fast does this work?
The parallel DFS works in O(w1 + w2), where w1 and w2 are sizes
of corresponding subtrees

(it can even be made O(min(w1,w2))).
Each vertex of the trie is present in at most k + 1 subtrees, so total
complexity is O(k2n) since there are O(kn) vertices in the trie.

A B C D E F G H I J

B. Be Friends

How fast does this work?
The parallel DFS works in O(w1 + w2), where w1 and w2 are sizes
of corresponding subtrees (it can even be made O(min(w1,w2))).

Each vertex of the trie is present in at most k + 1 subtrees, so total
complexity is O(k2n) since there are O(kn) vertices in the trie.

A B C D E F G H I J

B. Be Friends

How fast does this work?
The parallel DFS works in O(w1 + w2), where w1 and w2 are sizes
of corresponding subtrees (it can even be made O(min(w1,w2))).
Each vertex of the trie is present in at most k + 1 subtrees, so total
complexity is O(k2n) since there are O(kn) vertices in the trie.

A B C D E F G H I J

C. Coprime Heaven

We are given k 6 4 numbers li . Distribute numbers from 1 to
n =

∑
li into circles of lengths l1, . . . , lk such that each pair of

adjacent numbers is coprime.

A B C D E F G H I J

C. Coprime Heaven

Clearly, even numbers cannot be adjacent. A circle of length l > 1
can include at most bl/2c even numbers (or at most 1 if l = 1). If
there are more even numbers than we can include in all the circles,
then no answer exists.

Proposition
Otherwise, there is always an answer!

Proof
Can be done by a long and tedious case analysis and constructions.
Key insight: it is convenient to include runs of adjacent numbers
into circles, then only ends of the runs should be checked for
coprimeness.

A B C D E F G H I J

C. Coprime Heaven

Clearly, even numbers cannot be adjacent. A circle of length l > 1
can include at most bl/2c even numbers (or at most 1 if l = 1). If
there are more even numbers than we can include in all the circles,
then no answer exists.

Proposition
Otherwise, there is always an answer!

Proof
Can be done by a long and tedious case analysis and constructions.
Key insight: it is convenient to include runs of adjacent numbers
into circles, then only ends of the runs should be checked for
coprimeness.

A B C D E F G H I J

C. Coprime Heaven

Clearly, even numbers cannot be adjacent. A circle of length l > 1
can include at most bl/2c even numbers (or at most 1 if l = 1). If
there are more even numbers than we can include in all the circles,
then no answer exists.

Proposition
Otherwise, there is always an answer!

Proof
Can be done by a long and tedious case analysis and constructions.

Key insight: it is convenient to include runs of adjacent numbers
into circles, then only ends of the runs should be checked for
coprimeness.

A B C D E F G H I J

C. Coprime Heaven

Clearly, even numbers cannot be adjacent. A circle of length l > 1
can include at most bl/2c even numbers (or at most 1 if l = 1). If
there are more even numbers than we can include in all the circles,
then no answer exists.

Proposition
Otherwise, there is always an answer!

Proof
Can be done by a long and tedious case analysis and constructions.
Key insight: it is convenient to include runs of adjacent numbers
into circles, then only ends of the runs should be checked for
coprimeness.

A B C D E F G H I J

C. Coprime Heaven

Is there a simple way to construct an answer (provided it exists)?

A simple (but apparently hard to prove) way is this: construct
circles from left to right. Brute-force all ways to put first few
numbers, then brute-force all ways to greedily fill the circles with
adjacent numbers (that is, if the last used number is x , we will
append numbers x + 1, x + 2, . . . to the chosen circle until it fills
up). Carefully check for coprimeness each time we put anything,
don’t forget to handle l = 1 case.
Always finds a solution (at least, on the jury test cases), and works
very fast too (which hints that there are many solutions of similar
form).
An unchecked conjecture: starting from trivial configuration (put
smallest numbers into first circle, the next into the second circle,
and so on) and performing local optimization/simulated annealing
should work too.

A B C D E F G H I J

C. Coprime Heaven

Is there a simple way to construct an answer (provided it exists)?
A simple (but apparently hard to prove) way is this: construct
circles from left to right.

Brute-force all ways to put first few
numbers, then brute-force all ways to greedily fill the circles with
adjacent numbers (that is, if the last used number is x , we will
append numbers x + 1, x + 2, . . . to the chosen circle until it fills
up). Carefully check for coprimeness each time we put anything,
don’t forget to handle l = 1 case.
Always finds a solution (at least, on the jury test cases), and works
very fast too (which hints that there are many solutions of similar
form).
An unchecked conjecture: starting from trivial configuration (put
smallest numbers into first circle, the next into the second circle,
and so on) and performing local optimization/simulated annealing
should work too.

A B C D E F G H I J

C. Coprime Heaven

Is there a simple way to construct an answer (provided it exists)?
A simple (but apparently hard to prove) way is this: construct
circles from left to right. Brute-force all ways to put first few
numbers, then brute-force all ways to greedily fill the circles with
adjacent numbers (that is, if the last used number is x , we will
append numbers x + 1, x + 2, . . . to the chosen circle until it fills
up).

Carefully check for coprimeness each time we put anything,
don’t forget to handle l = 1 case.
Always finds a solution (at least, on the jury test cases), and works
very fast too (which hints that there are many solutions of similar
form).
An unchecked conjecture: starting from trivial configuration (put
smallest numbers into first circle, the next into the second circle,
and so on) and performing local optimization/simulated annealing
should work too.

A B C D E F G H I J

C. Coprime Heaven

Is there a simple way to construct an answer (provided it exists)?
A simple (but apparently hard to prove) way is this: construct
circles from left to right. Brute-force all ways to put first few
numbers, then brute-force all ways to greedily fill the circles with
adjacent numbers (that is, if the last used number is x , we will
append numbers x + 1, x + 2, . . . to the chosen circle until it fills
up). Carefully check for coprimeness each time we put anything,
don’t forget to handle l = 1 case.

Always finds a solution (at least, on the jury test cases), and works
very fast too (which hints that there are many solutions of similar
form).
An unchecked conjecture: starting from trivial configuration (put
smallest numbers into first circle, the next into the second circle,
and so on) and performing local optimization/simulated annealing
should work too.

A B C D E F G H I J

C. Coprime Heaven

Is there a simple way to construct an answer (provided it exists)?
A simple (but apparently hard to prove) way is this: construct
circles from left to right. Brute-force all ways to put first few
numbers, then brute-force all ways to greedily fill the circles with
adjacent numbers (that is, if the last used number is x , we will
append numbers x + 1, x + 2, . . . to the chosen circle until it fills
up). Carefully check for coprimeness each time we put anything,
don’t forget to handle l = 1 case.
Always finds a solution (at least, on the jury test cases), and works
very fast too (which hints that there are many solutions of similar
form).

An unchecked conjecture: starting from trivial configuration (put
smallest numbers into first circle, the next into the second circle,
and so on) and performing local optimization/simulated annealing
should work too.

A B C D E F G H I J

C. Coprime Heaven

Is there a simple way to construct an answer (provided it exists)?
A simple (but apparently hard to prove) way is this: construct
circles from left to right. Brute-force all ways to put first few
numbers, then brute-force all ways to greedily fill the circles with
adjacent numbers (that is, if the last used number is x , we will
append numbers x + 1, x + 2, . . . to the chosen circle until it fills
up). Carefully check for coprimeness each time we put anything,
don’t forget to handle l = 1 case.
Always finds a solution (at least, on the jury test cases), and works
very fast too (which hints that there are many solutions of similar
form).
An unchecked conjecture: starting from trivial configuration (put
smallest numbers into first circle, the next into the second circle,
and so on) and performing local optimization/simulated annealing
should work too.

A B C D E F G H I J

D. Drawing Hell

A set of n points is given in the plane. Two players play a game, a
move is to connect two points with a segment if the segment does
not contain other points and does not intersect previously drawn
segments. Determine the winner of the game if the player who is
unable to make a move loses and both players act optimally.

A B C D E F G H I J

D. Drawing Hell

Turns out the number of moves in the game does not depend on
the strategy, but only on the set of points.

Observation
If all points lie on a straight line, then the number of moves is
n − 1. Otherwise, the number of moves is 3n − 3− c , where c is
the number of points on the border of the set’s convex hull.

Proof
The first case is obvious. For the second case, we notice that any
final configuration is a triangulation of the initial set (that is, every
face of the resulting planar graph is a triangle). Euler’s formula
V − E + F = 2 implies that any triangulation of a non-collinear set
has 3n − 3− c edges.

A B C D E F G H I J

D. Drawing Hell

Turns out the number of moves in the game does not depend on
the strategy, but only on the set of points.

Observation
If all points lie on a straight line, then the number of moves is
n − 1. Otherwise, the number of moves is 3n − 3− c , where c is
the number of points on the border of the set’s convex hull.

Proof
The first case is obvious. For the second case, we notice that any
final configuration is a triangulation of the initial set (that is, every
face of the resulting planar graph is a triangle). Euler’s formula
V − E + F = 2 implies that any triangulation of a non-collinear set
has 3n − 3− c edges.

A B C D E F G H I J

D. Drawing Hell

Turns out the number of moves in the game does not depend on
the strategy, but only on the set of points.

Observation
If all points lie on a straight line, then the number of moves is
n − 1. Otherwise, the number of moves is 3n − 3− c , where c is
the number of points on the border of the set’s convex hull.

Proof
The first case is obvious. For the second case, we notice that any
final configuration is a triangulation of the initial set (that is, every
face of the resulting planar graph is a triangle). Euler’s formula
V − E + F = 2 implies that any triangulation of a non-collinear set
has 3n − 3− c edges.

A B C D E F G H I J

D. Drawing Hell

Build the convex hull of the initial set. If it’s a line, the answer
depends on the parity of n − 1. Otherwise, the answer depends on
the parity of 3n − 3− c .

The number of test cases is large, thus one should use an
O(n log n)-time algorithm for convex hull.

A B C D E F G H I J

D. Drawing Hell

Build the convex hull of the initial set. If it’s a line, the answer
depends on the parity of n − 1. Otherwise, the answer depends on
the parity of 3n − 3− c .
The number of test cases is large, thus one should use an
O(n log n)-time algorithm for convex hull.

A B C D E F G H I J

E. Easiest game

Process several queries: for an m × n board count number of pairs
(s, t) with 1 6 s 6 t 6 max(m, n) such that an (s, t)-knight can
visit all board cells.

Solution has two parts: finding the criterion for suitability of an
(s, t)-pair, and then counting them effectively.
Both are hard.

A B C D E F G H I J

E. Easiest game

Process several queries: for an m × n board count number of pairs
(s, t) with 1 6 s 6 t 6 max(m, n) such that an (s, t)-knight can
visit all board cells.
Solution has two parts: finding the criterion for suitability of an
(s, t)-pair, and then counting them effectively.

Both are hard.

A B C D E F G H I J

E. Easiest game

Process several queries: for an m × n board count number of pairs
(s, t) with 1 6 s 6 t 6 max(m, n) such that an (s, t)-knight can
visit all board cells.
Solution has two parts: finding the criterion for suitability of an
(s, t)-pair, and then counting them effectively.
Both are hard.

A B C D E F G H I J

E. Easiest game

How to find the condition when an (s, t)-knight can traverse the
board? One way is to write a brute-force for small boards and seek
for pattern.

After some seeking, one can arrive at

Proposition

Let m 6 n and s 6 t. Then, an (s, t)-knight can traverse an m × n
board iff three conditions hold:

1 GCD(t + s, t − s) = 1

2 2t 6 n

3 t + s 6 m

A B C D E F G H I J

E. Easiest game

How to find the condition when an (s, t)-knight can traverse the
board? One way is to write a brute-force for small boards and seek
for pattern.
After some seeking, one can arrive at

Proposition

Let m 6 n and s 6 t. Then, an (s, t)-knight can traverse an m × n
board iff three conditions hold:

1 GCD(t + s, t − s) = 1

2 2t 6 n

3 t + s 6 m

A B C D E F G H I J

E. Easiest game

How to find the condition when an (s, t)-knight can traverse the
board? One way is to write a brute-force for small boards and seek
for pattern.
After some seeking, one can arrive at

Proposition

Let m 6 n and s 6 t. Then, an (s, t)-knight can traverse an m × n
board iff three conditions hold:

1 GCD(t + s, t − s) = 1

2 2t 6 n

3 t + s 6 m

A B C D E F G H I J

E. Easiest game

How to find the condition when an (s, t)-knight can traverse the
board? One way is to write a brute-force for small boards and seek
for pattern.
After some seeking, one can arrive at

Proposition

Let m 6 n and s 6 t. Then, an (s, t)-knight can traverse an m × n
board iff three conditions hold:

1 GCD(t + s, t − s) = 1

2 2t 6 n

3 t + s 6 m

A B C D E F G H I J

E. Easiest game

How to find the condition when an (s, t)-knight can traverse the
board? One way is to write a brute-force for small boards and seek
for pattern.
After some seeking, one can arrive at

Proposition

Let m 6 n and s 6 t. Then, an (s, t)-knight can traverse an m × n
board iff three conditions hold:

1 GCD(t + s, t − s) = 1

2 2t 6 n

3 t + s 6 m

A B C D E F G H I J

E. Easiest game

How to find the condition when an (s, t)-knight can traverse the
board? One way is to write a brute-force for small boards and seek
for pattern.
After some seeking, one can arrive at

Proposition

Let m 6 n and s 6 t. Then, an (s, t)-knight can traverse an m × n
board iff three conditions hold:

1 GCD(t + s, t − s) = 1

2 2t 6 n

3 t + s 6 m

A B C D E F G H I J

E. Easiest game

Proof (partial)

Necessity: if g = GCD(t + s, t − s) > 1, then x + y and x − y are
always the same modulo g , thus not all cells are reachable from
each other.

If 2t > n, then no move can be made from the central cell of the
board.
If s + t > m, then ???
(Empirically, for s + t = m + 1 only half of the board is reachable
from a certain cell (Parity of some sort?))
Sufficiency: ???

A B C D E F G H I J

E. Easiest game

Proof (partial)

Necessity: if g = GCD(t + s, t − s) > 1, then x + y and x − y are
always the same modulo g , thus not all cells are reachable from
each other.
If 2t > n, then no move can be made from the central cell of the
board.

If s + t > m, then ???
(Empirically, for s + t = m + 1 only half of the board is reachable
from a certain cell (Parity of some sort?))
Sufficiency: ???

A B C D E F G H I J

E. Easiest game

Proof (partial)

Necessity: if g = GCD(t + s, t − s) > 1, then x + y and x − y are
always the same modulo g , thus not all cells are reachable from
each other.
If 2t > n, then no move can be made from the central cell of the
board.
If s + t > m, then ???

(Empirically, for s + t = m + 1 only half of the board is reachable
from a certain cell (Parity of some sort?))
Sufficiency: ???

A B C D E F G H I J

E. Easiest game

Proof (partial)

Necessity: if g = GCD(t + s, t − s) > 1, then x + y and x − y are
always the same modulo g , thus not all cells are reachable from
each other.
If 2t > n, then no move can be made from the central cell of the
board.
If s + t > m, then ???
(Empirically, for s + t = m + 1 only half of the board is reachable
from a certain cell (Parity of some sort?))

Sufficiency: ???

A B C D E F G H I J

E. Easiest game

Proof (partial)

Necessity: if g = GCD(t + s, t − s) > 1, then x + y and x − y are
always the same modulo g , thus not all cells are reachable from
each other.
If 2t > n, then no move can be made from the central cell of the
board.
If s + t > m, then ???
(Empirically, for s + t = m + 1 only half of the board is reachable
from a certain cell (Parity of some sort?))
Sufficiency: ???

A B C D E F G H I J

E. Easiest game

Let a = t + s, b = t − s.

Then, the conditions are:

1 GCD(a, b) = 1

2 a+ b 6 n

3 a 6 m

4 additionally, b < a, and a and b have the same parity.

If we drop the GCD condition, the number of (a, b) pairs can be
calculated in O(1) (it’s the number of black cells inside a certain
region of the infinite chessboard).
Denote f (n,m) the answer without GCD.
Also, denote f ′(n,m) the number of pairs with same restrictions
except for the last one (same parity).

A B C D E F G H I J

E. Easiest game

Let a = t + s, b = t − s.
Then, the conditions are:

1 GCD(a, b) = 1

2 a+ b 6 n

3 a 6 m

4 additionally, b < a, and a and b have the same parity.

If we drop the GCD condition, the number of (a, b) pairs can be
calculated in O(1) (it’s the number of black cells inside a certain
region of the infinite chessboard).
Denote f (n,m) the answer without GCD.
Also, denote f ′(n,m) the number of pairs with same restrictions
except for the last one (same parity).

A B C D E F G H I J

E. Easiest game

Let a = t + s, b = t − s.
Then, the conditions are:

1 GCD(a, b) = 1

2 a+ b 6 n

3 a 6 m

4 additionally, b < a, and a and b have the same parity.

If we drop the GCD condition, the number of (a, b) pairs can be
calculated in O(1) (it’s the number of black cells inside a certain
region of the infinite chessboard).
Denote f (n,m) the answer without GCD.
Also, denote f ′(n,m) the number of pairs with same restrictions
except for the last one (same parity).

A B C D E F G H I J

E. Easiest game

Let a = t + s, b = t − s.
Then, the conditions are:

1 GCD(a, b) = 1

2 a+ b 6 n

3 a 6 m

4 additionally, b < a, and a and b have the same parity.

If we drop the GCD condition, the number of (a, b) pairs can be
calculated in O(1) (it’s the number of black cells inside a certain
region of the infinite chessboard).
Denote f (n,m) the answer without GCD.
Also, denote f ′(n,m) the number of pairs with same restrictions
except for the last one (same parity).

A B C D E F G H I J

E. Easiest game

Let a = t + s, b = t − s.
Then, the conditions are:

1 GCD(a, b) = 1

2 a+ b 6 n

3 a 6 m

4 additionally, b < a, and a and b have the same parity.

If we drop the GCD condition, the number of (a, b) pairs can be
calculated in O(1) (it’s the number of black cells inside a certain
region of the infinite chessboard).
Denote f (n,m) the answer without GCD.
Also, denote f ′(n,m) the number of pairs with same restrictions
except for the last one (same parity).

A B C D E F G H I J

E. Easiest game

Let a = t + s, b = t − s.
Then, the conditions are:

1 GCD(a, b) = 1

2 a+ b 6 n

3 a 6 m

4 additionally, b < a, and a and b have the same parity.

If we drop the GCD condition, the number of (a, b) pairs can be
calculated in O(1) (it’s the number of black cells inside a certain
region of the infinite chessboard).
Denote f (n,m) the answer without GCD.
Also, denote f ′(n,m) the number of pairs with same restrictions
except for the last one (same parity).

A B C D E F G H I J

E. Easiest game

Let a = t + s, b = t − s.
Then, the conditions are:

1 GCD(a, b) = 1

2 a+ b 6 n

3 a 6 m

4 additionally, b < a, and a and b have the same parity.

If we drop the GCD condition, the number of (a, b) pairs can be
calculated in O(1) (it’s the number of black cells inside a certain
region of the infinite chessboard).

Denote f (n,m) the answer without GCD.
Also, denote f ′(n,m) the number of pairs with same restrictions
except for the last one (same parity).

A B C D E F G H I J

E. Easiest game

Let a = t + s, b = t − s.
Then, the conditions are:

1 GCD(a, b) = 1

2 a+ b 6 n

3 a 6 m

4 additionally, b < a, and a and b have the same parity.

If we drop the GCD condition, the number of (a, b) pairs can be
calculated in O(1) (it’s the number of black cells inside a certain
region of the infinite chessboard).
Denote f (n,m) the answer without GCD.

Also, denote f ′(n,m) the number of pairs with same restrictions
except for the last one (same parity).

A B C D E F G H I J

E. Easiest game

Let a = t + s, b = t − s.
Then, the conditions are:

1 GCD(a, b) = 1

2 a+ b 6 n

3 a 6 m

4 additionally, b < a, and a and b have the same parity.

If we drop the GCD condition, the number of (a, b) pairs can be
calculated in O(1) (it’s the number of black cells inside a certain
region of the infinite chessboard).
Denote f (n,m) the answer without GCD.
Also, denote f ′(n,m) the number of pairs with same restrictions
except for the last one (same parity).

A B C D E F G H I J

E. Easiest game

To account for GCD, we will use the inclusion-exclusion principle.

The answer is almost
∑min(n,m)

k=1 µ(k)f (bn/kc, bm/kc), where µ(k)
is the Moebius function.
The difference is, if k is even then we shouldn’t care about same
parity of a and b inside f (bn/kc, bm/kc), so in this case we replace
it with f ′(bn/kc, bm/kc).
That’s still O(min(n,m)).
To optimize further, note that there are O(

√
n +
√
m) values of k

such that bn/kc or bm/kc change.
Thus, the solution can be optimized to O(

√
n +
√
m) per test by

processing segments of k where bn/kc and bm/kc are fixed.

A B C D E F G H I J

E. Easiest game

To account for GCD, we will use the inclusion-exclusion principle.
The answer is almost

∑min(n,m)
k=1 µ(k)f (bn/kc, bm/kc), where µ(k)

is the Moebius function.

The difference is, if k is even then we shouldn’t care about same
parity of a and b inside f (bn/kc, bm/kc), so in this case we replace
it with f ′(bn/kc, bm/kc).
That’s still O(min(n,m)).
To optimize further, note that there are O(

√
n +
√
m) values of k

such that bn/kc or bm/kc change.
Thus, the solution can be optimized to O(

√
n +
√
m) per test by

processing segments of k where bn/kc and bm/kc are fixed.

A B C D E F G H I J

E. Easiest game

To account for GCD, we will use the inclusion-exclusion principle.
The answer is almost

∑min(n,m)
k=1 µ(k)f (bn/kc, bm/kc), where µ(k)

is the Moebius function.
The difference is, if k is even then we shouldn’t care about same
parity of a and b inside f (bn/kc, bm/kc), so in this case we replace
it with f ′(bn/kc, bm/kc).

That’s still O(min(n,m)).
To optimize further, note that there are O(

√
n +
√
m) values of k

such that bn/kc or bm/kc change.
Thus, the solution can be optimized to O(

√
n +
√
m) per test by

processing segments of k where bn/kc and bm/kc are fixed.

A B C D E F G H I J

E. Easiest game

To account for GCD, we will use the inclusion-exclusion principle.
The answer is almost

∑min(n,m)
k=1 µ(k)f (bn/kc, bm/kc), where µ(k)

is the Moebius function.
The difference is, if k is even then we shouldn’t care about same
parity of a and b inside f (bn/kc, bm/kc), so in this case we replace
it with f ′(bn/kc, bm/kc).
That’s still O(min(n,m)).

To optimize further, note that there are O(
√
n +
√
m) values of k

such that bn/kc or bm/kc change.
Thus, the solution can be optimized to O(

√
n +
√
m) per test by

processing segments of k where bn/kc and bm/kc are fixed.

A B C D E F G H I J

E. Easiest game

To account for GCD, we will use the inclusion-exclusion principle.
The answer is almost

∑min(n,m)
k=1 µ(k)f (bn/kc, bm/kc), where µ(k)

is the Moebius function.
The difference is, if k is even then we shouldn’t care about same
parity of a and b inside f (bn/kc, bm/kc), so in this case we replace
it with f ′(bn/kc, bm/kc).
That’s still O(min(n,m)).
To optimize further, note that there are O(

√
n +
√
m) values of k

such that bn/kc or bm/kc change.

Thus, the solution can be optimized to O(
√
n +
√
m) per test by

processing segments of k where bn/kc and bm/kc are fixed.

A B C D E F G H I J

E. Easiest game

To account for GCD, we will use the inclusion-exclusion principle.
The answer is almost

∑min(n,m)
k=1 µ(k)f (bn/kc, bm/kc), where µ(k)

is the Moebius function.
The difference is, if k is even then we shouldn’t care about same
parity of a and b inside f (bn/kc, bm/kc), so in this case we replace
it with f ′(bn/kc, bm/kc).
That’s still O(min(n,m)).
To optimize further, note that there are O(

√
n +
√
m) values of k

such that bn/kc or bm/kc change.
Thus, the solution can be optimized to O(

√
n +
√
m) per test by

processing segments of k where bn/kc and bm/kc are fixed.

A B C D E F G H I J

F. Fibonacci of Fibonacci

Find FFn mod 20160519.

A B C D E F G H I J

F. Fibonacci of Fibonacci

Proposition
For each integer m Fibonacci numbers modulo m eventually loop,
that is, there exists p > 0 such that Fn ≡ Fn+p(mod m) for each n.

For the given modulo 20160519 the period is small enough to find
explicitly.
Since there are many queries to answer, one should use matrix
exponentiation to find the answer in O(log n) per query:

Proposition (
Fn+1

Fn

)
=

(
1 1
1 0

)n (
F1
F0

)

A B C D E F G H I J

F. Fibonacci of Fibonacci

Proposition
For each integer m Fibonacci numbers modulo m eventually loop,
that is, there exists p > 0 such that Fn ≡ Fn+p(mod m) for each n.

For the given modulo 20160519 the period is small enough to find
explicitly.

Since there are many queries to answer, one should use matrix
exponentiation to find the answer in O(log n) per query:

Proposition (
Fn+1

Fn

)
=

(
1 1
1 0

)n (
F1
F0

)

A B C D E F G H I J

F. Fibonacci of Fibonacci

Proposition
For each integer m Fibonacci numbers modulo m eventually loop,
that is, there exists p > 0 such that Fn ≡ Fn+p(mod m) for each n.

For the given modulo 20160519 the period is small enough to find
explicitly.
Since there are many queries to answer, one should use matrix
exponentiation to find the answer in O(log n) per query:

Proposition (
Fn+1

Fn

)
=

(
1 1
1 0

)n (
F1
F0

)

A B C D E F G H I J

G. Global Warming

Given two convex polygons — the planet and the moon, and the
radiation direction from the sun, find the total heat from the sun
assuming that the light can reflect from the moon.

A B C D E F G H I J

G. Global Warming

The model of effective heat absorption in the statement is
somewhat obscure. However, it helps to think of it this way: assume
that the planet is illuminated by a single strip of light. Then the
resulting amount of heat from this strip of light is the width of the
strip part that falls on the surface of the planet.

For example, on this picture the equivalent length is equal to half
the square diagonal length.

A B C D E F G H I J

G. Global Warming

The model of effective heat absorption in the statement is
somewhat obscure. However, it helps to think of it this way: assume
that the planet is illuminated by a single strip of light. Then the
resulting amount of heat from this strip of light is the width of the
strip part that falls on the surface of the planet.

For example, on this picture the equivalent length is equal to half
the square diagonal length.

A B C D E F G H I J

G. Global Warming

Let us solve a subproblem: find the equivalent length for a given
light strip and a convex polygon.

Each ray of light is described by a line equation ax + by + c = 0,
where the vector (a, b) is orthogonal to the light direction.
Let’s assume that a2 + b2 = 1. Then the strip is described by two
border rays, which are described by numbers c and c from
corresponding equations.
For the polygon we can similarly find border rays which fall on its
surface. It is evident that their c ’s (denote them c ′ and c ′) are
simply the extremal values of ax + by over all vertices of polygon.
The equivalent length of the illuminated part is then the length of
the [c ; c] ∩ [c ′; c ′] range.

A B C D E F G H I J

G. Global Warming

Let us solve a subproblem: find the equivalent length for a given
light strip and a convex polygon.
Each ray of light is described by a line equation ax + by + c = 0,
where the vector (a, b) is orthogonal to the light direction.

Let’s assume that a2 + b2 = 1. Then the strip is described by two
border rays, which are described by numbers c and c from
corresponding equations.
For the polygon we can similarly find border rays which fall on its
surface. It is evident that their c ’s (denote them c ′ and c ′) are
simply the extremal values of ax + by over all vertices of polygon.
The equivalent length of the illuminated part is then the length of
the [c ; c] ∩ [c ′; c ′] range.

A B C D E F G H I J

G. Global Warming

Let us solve a subproblem: find the equivalent length for a given
light strip and a convex polygon.
Each ray of light is described by a line equation ax + by + c = 0,
where the vector (a, b) is orthogonal to the light direction.
Let’s assume that a2 + b2 = 1. Then the strip is described by two
border rays, which are described by numbers c and c from
corresponding equations.

For the polygon we can similarly find border rays which fall on its
surface. It is evident that their c ’s (denote them c ′ and c ′) are
simply the extremal values of ax + by over all vertices of polygon.
The equivalent length of the illuminated part is then the length of
the [c ; c] ∩ [c ′; c ′] range.

A B C D E F G H I J

G. Global Warming

Let us solve a subproblem: find the equivalent length for a given
light strip and a convex polygon.
Each ray of light is described by a line equation ax + by + c = 0,
where the vector (a, b) is orthogonal to the light direction.
Let’s assume that a2 + b2 = 1. Then the strip is described by two
border rays, which are described by numbers c and c from
corresponding equations.
For the polygon we can similarly find border rays which fall on its
surface. It is evident that their c ’s (denote them c ′ and c ′) are
simply the extremal values of ax + by over all vertices of polygon.

The equivalent length of the illuminated part is then the length of
the [c ; c] ∩ [c ′; c ′] range.

A B C D E F G H I J

G. Global Warming

Let us solve a subproblem: find the equivalent length for a given
light strip and a convex polygon.
Each ray of light is described by a line equation ax + by + c = 0,
where the vector (a, b) is orthogonal to the light direction.
Let’s assume that a2 + b2 = 1. Then the strip is described by two
border rays, which are described by numbers c and c from
corresponding equations.
For the polygon we can similarly find border rays which fall on its
surface. It is evident that their c ’s (denote them c ′ and c ′) are
simply the extremal values of ax + by over all vertices of polygon.
The equivalent length of the illuminated part is then the length of
the [c ; c] ∩ [c ′; c ′] range.

A B C D E F G H I J

G. Global Warming

The most complex part is to find extremal values of ax + by over
the vertices of a convex polygon.

One possible approach is based on the fact that ax + by function is
unimodal (with a unique local extremum) on a convex curve such
that its, say, x coordinate does not decrease. Hence, the ax + by
function is unimodal on lower and upper halves of the polygon, so
the ternary search can be applied to each of them.
This reasoning yields a way to find extremums of ax + by over
convex polygon in O(log n) time.

A B C D E F G H I J

G. Global Warming

The most complex part is to find extremal values of ax + by over
the vertices of a convex polygon.
One possible approach is based on the fact that ax + by function is
unimodal (with a unique local extremum) on a convex curve such
that its, say, x coordinate does not decrease. Hence, the ax + by
function is unimodal on lower and upper halves of the polygon, so
the ternary search can be applied to each of them.

This reasoning yields a way to find extremums of ax + by over
convex polygon in O(log n) time.

A B C D E F G H I J

G. Global Warming

The most complex part is to find extremal values of ax + by over
the vertices of a convex polygon.
One possible approach is based on the fact that ax + by function is
unimodal (with a unique local extremum) on a convex curve such
that its, say, x coordinate does not decrease. Hence, the ax + by
function is unimodal on lower and upper halves of the polygon, so
the ternary search can be applied to each of them.
This reasoning yields a way to find extremums of ax + by over
convex polygon in O(log n) time.

A B C D E F G H I J

G. Global Warming

The total heat is comprised of two parts: direct light and
moon-reflected light.

The direct heat is accounted simply as the effective length for the
planet NOT blocked by the moon (that is, the length of the
interval for the planet minus the length of the intersection for
planet’s and moon’s intervals).
The reflected heat is comprised of several strips for each illuminated
side of the moon. Each of them can be processed independently as
discussed earlier (no blocking can take place now). Take care since
some strips may reflect light away from the planet!
The total complexity is O(n +m log n).

A B C D E F G H I J

G. Global Warming

The total heat is comprised of two parts: direct light and
moon-reflected light.
The direct heat is accounted simply as the effective length for the
planet NOT blocked by the moon (that is, the length of the
interval for the planet minus the length of the intersection for
planet’s and moon’s intervals).

The reflected heat is comprised of several strips for each illuminated
side of the moon. Each of them can be processed independently as
discussed earlier (no blocking can take place now). Take care since
some strips may reflect light away from the planet!
The total complexity is O(n +m log n).

A B C D E F G H I J

G. Global Warming

The total heat is comprised of two parts: direct light and
moon-reflected light.
The direct heat is accounted simply as the effective length for the
planet NOT blocked by the moon (that is, the length of the
interval for the planet minus the length of the intersection for
planet’s and moon’s intervals).
The reflected heat is comprised of several strips for each illuminated
side of the moon. Each of them can be processed independently as
discussed earlier (no blocking can take place now). Take care since
some strips may reflect light away from the planet!

The total complexity is O(n +m log n).

A B C D E F G H I J

G. Global Warming

The total heat is comprised of two parts: direct light and
moon-reflected light.
The direct heat is accounted simply as the effective length for the
planet NOT blocked by the moon (that is, the length of the
interval for the planet minus the length of the intersection for
planet’s and moon’s intervals).
The reflected heat is comprised of several strips for each illuminated
side of the moon. Each of them can be processed independently as
discussed earlier (no blocking can take place now). Take care since
some strips may reflect light away from the planet!
The total complexity is O(n +m log n).

A B C D E F G H I J

H. Hash Collision

Count the pairs of n-letter strings with the same polynomial hash
with given base and modulo.

Polynomial hash is described by the formula h(s) =
n−1∑
i=0

sip
i modm,

where p is the base, and m is the modulo.

A B C D E F G H I J

H. Hash Collision

Count the pairs of n-letter strings with the same polynomial hash
with given base and modulo.

Polynomial hash is described by the formula h(s) =
n−1∑
i=0

sip
i modm,

where p is the base, and m is the modulo.

A B C D E F G H I J

H. Hash Collision

Denote dn,h the number of n-letter strings with hash value h. The
answer is then

∑m−1
h=0

(dn,h
2

)

By definition, they satisfy the recurrence

dn1+n2,h =
m−1∑
h1=0

dn1,h1dn2,(h−h1pn1)modm

Applying this reccurence with n1 = 1, one can obtain a O(nmα)
solution (since d1,h = 1 iff h is a hash of a single letter).

A B C D E F G H I J

H. Hash Collision

Denote dn,h the number of n-letter strings with hash value h. The
answer is then

∑m−1
h=0

(dn,h
2

)
By definition, they satisfy the recurrence

dn1+n2,h =
m−1∑
h1=0

dn1,h1dn2,(h−h1pn1)modm

Applying this reccurence with n1 = 1, one can obtain a O(nmα)
solution (since d1,h = 1 iff h is a hash of a single letter).

A B C D E F G H I J

H. Hash Collision

Denote dn,h the number of n-letter strings with hash value h. The
answer is then

∑m−1
h=0

(dn,h
2

)
By definition, they satisfy the recurrence

dn1+n2,h =
m−1∑
h1=0

dn1,h1dn2,(h−h1pn1)modm

Applying this reccurence with n1 = 1, one can obtain a O(nmα)
solution (since d1,h = 1 iff h is a hash of a single letter).

A B C D E F G H I J

H. Hash Collision

To speed this up, note that the described recurrence can be
computed as coefficients of the polynomial product P(x)× Q(x),
where
P(x) =

∑m−1
i=0 dn1,ix

i , and Q(x) =
∑m−1

i=0 dn2,ix
(pn1 i)modm.

Now, suppose that we know the numbers dn,h. Let
P(x) =

∑m−1
i=0 dn,ix

i , and P ′(x) =
∑m−1

i=0 dn,ix
(pni)modm. Then,

after computing P(x)P ′(x), we obtain the numbers d2n,h.
This allows us to use a binary exponentiation-line approach:

for an odd n recursively find the answers for n − 1 and use a
single step of recurrence
and for an even n find the answers for n/2 and use the method
above.

We obtain a solution that does O(log n) m-degree polynomial
multiplications.

A B C D E F G H I J

H. Hash Collision

To speed this up, note that the described recurrence can be
computed as coefficients of the polynomial product P(x)× Q(x),
where
P(x) =

∑m−1
i=0 dn1,ix

i , and Q(x) =
∑m−1

i=0 dn2,ix
(pn1 i)modm.

Now, suppose that we know the numbers dn,h. Let
P(x) =

∑m−1
i=0 dn,ix

i , and P ′(x) =
∑m−1

i=0 dn,ix
(pni)modm. Then,

after computing P(x)P ′(x), we obtain the numbers d2n,h.

This allows us to use a binary exponentiation-line approach:

for an odd n recursively find the answers for n − 1 and use a
single step of recurrence
and for an even n find the answers for n/2 and use the method
above.

We obtain a solution that does O(log n) m-degree polynomial
multiplications.

A B C D E F G H I J

H. Hash Collision

To speed this up, note that the described recurrence can be
computed as coefficients of the polynomial product P(x)× Q(x),
where
P(x) =

∑m−1
i=0 dn1,ix

i , and Q(x) =
∑m−1

i=0 dn2,ix
(pn1 i)modm.

Now, suppose that we know the numbers dn,h. Let
P(x) =

∑m−1
i=0 dn,ix

i , and P ′(x) =
∑m−1

i=0 dn,ix
(pni)modm. Then,

after computing P(x)P ′(x), we obtain the numbers d2n,h.
This allows us to use a binary exponentiation-line approach:

for an odd n recursively find the answers for n − 1 and use a
single step of recurrence
and for an even n find the answers for n/2 and use the method
above.

We obtain a solution that does O(log n) m-degree polynomial
multiplications.

A B C D E F G H I J

H. Hash Collision

To speed this up, note that the described recurrence can be
computed as coefficients of the polynomial product P(x)× Q(x),
where
P(x) =

∑m−1
i=0 dn1,ix

i , and Q(x) =
∑m−1

i=0 dn2,ix
(pn1 i)modm.

Now, suppose that we know the numbers dn,h. Let
P(x) =

∑m−1
i=0 dn,ix

i , and P ′(x) =
∑m−1

i=0 dn,ix
(pni)modm. Then,

after computing P(x)P ′(x), we obtain the numbers d2n,h.
This allows us to use a binary exponentiation-line approach:

for an odd n recursively find the answers for n − 1 and use a
single step of recurrence

and for an even n find the answers for n/2 and use the method
above.

We obtain a solution that does O(log n) m-degree polynomial
multiplications.

A B C D E F G H I J

H. Hash Collision

To speed this up, note that the described recurrence can be
computed as coefficients of the polynomial product P(x)× Q(x),
where
P(x) =

∑m−1
i=0 dn1,ix

i , and Q(x) =
∑m−1

i=0 dn2,ix
(pn1 i)modm.

Now, suppose that we know the numbers dn,h. Let
P(x) =

∑m−1
i=0 dn,ix

i , and P ′(x) =
∑m−1

i=0 dn,ix
(pni)modm. Then,

after computing P(x)P ′(x), we obtain the numbers d2n,h.
This allows us to use a binary exponentiation-line approach:

for an odd n recursively find the answers for n − 1 and use a
single step of recurrence
and for an even n find the answers for n/2 and use the method
above.

We obtain a solution that does O(log n) m-degree polynomial
multiplications.

A B C D E F G H I J

H. Hash Collision

To speed this up, note that the described recurrence can be
computed as coefficients of the polynomial product P(x)× Q(x),
where
P(x) =

∑m−1
i=0 dn1,ix

i , and Q(x) =
∑m−1

i=0 dn2,ix
(pn1 i)modm.

Now, suppose that we know the numbers dn,h. Let
P(x) =

∑m−1
i=0 dn,ix

i , and P ′(x) =
∑m−1

i=0 dn,ix
(pni)modm. Then,

after computing P(x)P ′(x), we obtain the numbers d2n,h.
This allows us to use a binary exponentiation-line approach:

for an odd n recursively find the answers for n − 1 and use a
single step of recurrence
and for an even n find the answers for n/2 and use the method
above.

We obtain a solution that does O(log n) m-degree polynomial
multiplications.

A B C D E F G H I J

H. Hash Collision

Of course, to speed up we should use FFT to multiply polynomials.
Since the answer should be found modulo 106 + 3, the double
precision should be enough. The resulting complexity is
O(m logm log n).

A B C D E F G H I J

I. Increasing or Decreasing

Process many queries of the form: count the numbers inside the
range [L;R] which decimal representations are monotonous (that is,
teh digits are either increasing or decreasing).

A B C D E F G H I J

I. Increasing or Decreasing

First approach: compute DP of sort “how many
non-increasing/non-decreasing l-digit prefixes of n-digit numbers
exist such that they are already less than/still equal to
corresponding part of R/L” (this is messy to code and will probably
need some optimization).

Second approach: generate all suitable numbers and note that there
are less than 20 million of them. Hence, each query is simply
several binary searches in precomputed lists.

A B C D E F G H I J

I. Increasing or Decreasing

First approach: compute DP of sort “how many
non-increasing/non-decreasing l-digit prefixes of n-digit numbers
exist such that they are already less than/still equal to
corresponding part of R/L” (this is messy to code and will probably
need some optimization).
Second approach: generate all suitable numbers and note that there
are less than 20 million of them. Hence, each query is simply
several binary searches in precomputed lists.

A B C D E F G H I J

J. Just Convolution

Given a0, . . . , an−1 and b0, . . . , bn−1 — random permutations of
{0, . . . , n − 1}, find c0, . . . , cn−1, where

ck =
n−1
max
i=0

(ai + b(k−i)mod n)

.

For convenience we will replace max with min in the above formula,
which does not change the problem much.

A B C D E F G H I J

J. Just Convolution

Given a0, . . . , an−1 and b0, . . . , bn−1 — random permutations of
{0, . . . , n − 1}, find c0, . . . , cn−1, where

ck =
n−1
max
i=0

(ai + b(k−i)mod n)

.
For convenience we will replace max with min in the above formula,
which does not change the problem much.

A B C D E F G H I J

J. Just Convolution

O(n2) solution is too ineffective. How do we use randomness of the
input permutations?

Let us choose a number K . We can now find all elements of ci less
than K by simply trying all pairs ai + bj < K in O(K 2) time.
For all ci that are still not found we perform an O(n) brute-force
computation.
Depending on K , how many elements on average will require a
brute-force?

A B C D E F G H I J

J. Just Convolution

O(n2) solution is too ineffective. How do we use randomness of the
input permutations?
Let us choose a number K . We can now find all elements of ci less
than K by simply trying all pairs ai + bj < K in O(K 2) time.

For all ci that are still not found we perform an O(n) brute-force
computation.
Depending on K , how many elements on average will require a
brute-force?

A B C D E F G H I J

J. Just Convolution

O(n2) solution is too ineffective. How do we use randomness of the
input permutations?
Let us choose a number K . We can now find all elements of ci less
than K by simply trying all pairs ai + bj < K in O(K 2) time.
For all ci that are still not found we perform an O(n) brute-force
computation.

Depending on K , how many elements on average will require a
brute-force?

A B C D E F G H I J

J. Just Convolution

O(n2) solution is too ineffective. How do we use randomness of the
input permutations?
Let us choose a number K . We can now find all elements of ci less
than K by simply trying all pairs ai + bj < K in O(K 2) time.
For all ci that are still not found we perform an O(n) brute-force
computation.
Depending on K , how many elements on average will require a
brute-force?

A B C D E F G H I J

J. Just Convolution

Proposition

Suppose K >
√
n. For a given index k , the probability that ck will

require a brute-force is at most e−K
2/2n+O(K3/n2).

Proof
Denote px the index of x in ai . Then b(k−p0)mod n > K , probability
of this is (n − K)/n.
Similarily, b(k−p1)mod n > K − 1, probability of this is
(n − 1− (K − 1))/(n − 1) (since we have already chosen
b(k−p0)mod n).
Proceeding this way, we conclude that the resulting probability is

(n − K)K

n!/(n − K)!
=

(1− K/n)K

(1− 1/n) . . . (1− (K − 1)/n)
= . . .

A B C D E F G H I J

J. Just Convolution

Proposition

Suppose K >
√
n. For a given index k , the probability that ck will

require a brute-force is at most e−K
2/2n+O(K3/n2).

Proof
Denote px the index of x in ai . Then b(k−p0)mod n > K , probability
of this is (n − K)/n.

Similarily, b(k−p1)mod n > K − 1, probability of this is
(n − 1− (K − 1))/(n − 1) (since we have already chosen
b(k−p0)mod n).
Proceeding this way, we conclude that the resulting probability is

(n − K)K

n!/(n − K)!
=

(1− K/n)K

(1− 1/n) . . . (1− (K − 1)/n)
= . . .

A B C D E F G H I J

J. Just Convolution

Proposition

Suppose K >
√
n. For a given index k , the probability that ck will

require a brute-force is at most e−K
2/2n+O(K3/n2).

Proof
Denote px the index of x in ai . Then b(k−p0)mod n > K , probability
of this is (n − K)/n.
Similarily, b(k−p1)mod n > K − 1, probability of this is
(n − 1− (K − 1))/(n − 1) (since we have already chosen
b(k−p0)mod n).

Proceeding this way, we conclude that the resulting probability is

(n − K)K

n!/(n − K)!
=

(1− K/n)K

(1− 1/n) . . . (1− (K − 1)/n)
= . . .

A B C D E F G H I J

J. Just Convolution

Proposition

Suppose K >
√
n. For a given index k , the probability that ck will

require a brute-force is at most e−K
2/2n+O(K3/n2).

Proof
Denote px the index of x in ai . Then b(k−p0)mod n > K , probability
of this is (n − K)/n.
Similarily, b(k−p1)mod n > K − 1, probability of this is
(n − 1− (K − 1))/(n − 1) (since we have already chosen
b(k−p0)mod n).
Proceeding this way, we conclude that the resulting probability is

(n − K)K

n!/(n − K)!
=

(1− K/n)K

(1− 1/n) . . . (1− (K − 1)/n)
= . . .

A B C D E F G H I J

J. Just Convolution

Proof (continued)

. . . = exp(K ln(1− K/n)− ln(1− 1/n)− . . .− ln(1− (K − 1)/n))

= exp

(
K

(
−K

n
+ O

(
K 2

n2

))
+

K (K − 1)

2n
+ O

(
K 3

n2

))

= exp

(
−K 2

2n
+ O

(
K 3

n2

))
For the worst case n = 2 · 105, choosing K = 2000 will produce
hardly a hundred of unprocessed elements.

A B C D E F G H I J

J. Just Convolution

Proof (continued)

. . . = exp(K ln(1− K/n)− ln(1− 1/n)− . . .− ln(1− (K − 1)/n))

= exp

(
K

(
−K

n
+ O

(
K 2

n2

))
+

K (K − 1)

2n
+ O

(
K 3

n2

))

= exp

(
−K 2

2n
+ O

(
K 3

n2

))
For the worst case n = 2 · 105, choosing K = 2000 will produce
hardly a hundred of unprocessed elements.

A B C D E F G H I J

J. Just Convolution

Proof (continued)

. . . = exp(K ln(1− K/n)− ln(1− 1/n)− . . .− ln(1− (K − 1)/n))

= exp

(
K

(
−K

n
+ O

(
K 2

n2

))
+

K (K − 1)

2n
+ O

(
K 3

n2

))

= exp

(
−K 2

2n
+ O

(
K 3

n2

))

For the worst case n = 2 · 105, choosing K = 2000 will produce
hardly a hundred of unprocessed elements.

A B C D E F G H I J

J. Just Convolution

Proof (continued)

. . . = exp(K ln(1− K/n)− ln(1− 1/n)− . . .− ln(1− (K − 1)/n))

= exp

(
K

(
−K

n
+ O

(
K 2

n2

))
+

K (K − 1)

2n
+ O

(
K 3

n2

))

= exp

(
−K 2

2n
+ O

(
K 3

n2

))
For the worst case n = 2 · 105, choosing K = 2000 will produce
hardly a hundred of unprocessed elements.

