
Day 5: Grand Prix of South Korea
Petrozavodsk Winter Training Camp 2018, Sunday, February 4, 2018

Problem Tutorial: “Donut”
If a point (x, y) is in the donut of center (xc, yc), this is equivalent to the point (xc, yc) is in the donut of
center (x, y). Thus, we set the input points as the center of the donut, and their area has its score. We
can sweep the area to maintain intervals and find the point (xc, yc) that maximize the sum. One of the
possible methods is segment tree with lazy propagation.

Problem Tutorial: “Circular Arrangement”
There is a well-known problem: Given n positive integer c1, c2, · · · , cn, count the number of arrays
containing exactly ci copies of integer i where no two consecutive elements are same. This problem can
solve with inclusion-exclusion principle and DP.

The solution of our problem based on above problem. Let wc,k is the product of the sizes of k group of c
elements. Thus, wc,k =

∑c
j=1wc−j,k−1 · j.

If integer i has k (1 ≤ k ≤ ci) groups, then wci,k be multiplied. Put every value for every k together, and
then we can calculate the sum of the cost to make every different possible array.

Dealing with circular is annoying, but not very hard.

Problem Tutorial: “Earthquake”
If we currently look route A, it is optimal way that look only bridges in route A until we could know the
route is intact or not.

Also, we should look from the most dangerous bridge to the least dangerous bridge in a route.

we can calculate

P [i]:= the probability that route i is safe

Q[i]:= the expected number of the inspections, if route i is unsafe.

for each route.

It is easy to solve the remaining part.

Problem Tutorial: “Dynamic Input Tool”
1. preprocessing : calculate F [c][i] := the first location x > i that satisfies S[i] = c for each alphabet c
and location i.

2. Use greedy algorithm. Suppose the current location is i (we need to enter S[i]) and the current location
of the subsequence is pivot. if F [S[i]][pivot] >= i, then increase the answer by 1 and now pivot = 0.
otherwise, pivot = F [S[i]][pivot]

Problem Tutorial: “Central Lake”
The problem can be transformed into the problem of finding the two points with the largest angle
difference.

1. O(Qlog2N) solution

if there are only build queries, we can process each query per O(logN) by using set. Suppose a house
at point x is built in the b-th query and demolished in the e-th query. We can save this in the segment
tree. Each query is saved in O(logN) nodes in the segment tree. Then we can manage queries by preorder
traversal of the segment tree.

2. O(QlogN) solution

There are 2 sets, S1 and S2. S1 saves the points of the houses. S1 contains the points of the houses, S2
contains the antipodal points of the houses. If we can find the closest point pair (p1, p2) that satisfies
p1 ∈ S1 and p2 ∈ S2, we can solve the problem.

Page 1 of 5

Day 5: Grand Prix of South Korea
Petrozavodsk Winter Training Camp 2018, Sunday, February 4, 2018

We can manage this by segment tree : for each range [b,e], save the leftmost point and the rightmost point
in this range (for both S1 and S2). Also, save the closest point pair (p1, p2).

Problem Tutorial: “MST with Metropolis”
First, make ordinary MST T from G. We can prove that MST with metropolis vertex i will be made by
deleting some edges in T and adding every edge end with i.

Let vi is the set of vertex i and its neighbors, and ti is the minimal subtree that contains every vertex in
vi. We can prove that deleting some edges in ti is sufficient to make MST with metropolis vertex i.

ti can represent as O(|vi|) branches and O(|vi|) edge chains. Branches are vertices in vi and the LCA of
the two consecutive vertices in sorted vi of DFS order. Edge chains are the set of the edges in the branch
to branch. We should delete at most one edge in each edge chain. Deleted edge must be the max weight
edge in the edge chain.

The actual process starts with delete every max weight edge in each edge chain. And restore deleted edges
in non-decreasing order of edge weight.

Problem Tutorial: “Number of Cycles”

For a set of segment S, let NC(S) := the number of simple cycles in the graph generated by these segment

First, put two long (nearly infinite) segments on the x-axis and y-axis. (segment AB and CD in the above
picture)

There are 12 segments in above picture. (segment AB, segment CD, 5 segments in the first quadrant,
and 5 segments in the third quadarnt) As you can see, there are lots of cycles in the picture. Also, we
can think the cycles in the first quadrant (including segment AB and segment CD) and the cycles in the
third quadrant (including segment AB and segment CD) separately.

Let’s think about the cycles in the first quadrant. There are 7 segments : segment AB, CD, EF , GH,
IJ , KL, MN . For solve this problem, it is enough to find two set containing 7 segments, S1 and S2, that
satisfies NC(S1) + NC(S2) = N . (Put S1 in the first quadrant and put S2 in the third quadrant. it
shares AB and CD, so there are 12 segments in total.)

Page 2 of 5

Day 5: Grand Prix of South Korea
Petrozavodsk Winter Training Camp 2018, Sunday, February 4, 2018

Ignoring the vertex A, B, C and D, there are six vertices in each segment. There are (6C2)
5 ways(we don’t

change segment AB and CD) to reduce the length of the segments by moving their endpoints inside the
segment (the straight line created by the extension does not change).

Finding S1 and S2 for all N between 1 and 1000 is possible.

If we check all the cases, it tooks more than 3 seconds. But we can use some random technique, or branch
and bound , or get segments set by preprocessing and just put it in the code. All the methods are good
enough to solve this problem.

Problem Tutorial: “Game of Sorting”
Let A[b, e] = ab, ab+1, ..., ae.

For the initial sequence A[b, e], Win[b, e] = 1 if Alice wins the game. otherwise Win[b, e] = 0.

If A[b, e] is monotone(nonincreasing or nondecreasing), then Win[b, e] = 0. For other cases, Win[b, e] =
(!Win[b, e− 1])|(!Win[b+ 1, e])

Key idea : Except a few cases, Win[b, e] = Win[b+1, e− 1]. then we can calculate Win[b, e] easily by its
b+ e value.

For a sequence S, if there is a contiguous monotone subsequence with length L and there is no contiguous
monotone subsequence with length L+ 1, we call S is L−monotone.

1. If A[b, e] is (e− b+ 1)−monotone, then Win[b, e] = 0.

2. If A[b, e] is (e− b)−monotone, then Win[b, e] = 1.

3. If A[b, e] is (e− b− 1)−monotone

3-a. A[b, e− 2] is monotone or A[b+ 2, e] is monontone

without loss of generality, A[b, e − 2] is monotone. Then Win[b, e] = !Win[b + 1, e] = Win[b + 2, e] =
!Win[b + 3, e] = it continues until Win[i, e] which A[i, e] is monotone. So if we precalculate L(e) :=
(the minimum value of x that satisfies A[L(e), e] is monotone) for all e, then we can calculate Win[b, e]
by the value L(e).

3-b. A[b+ 1, e− 1] is monotone

It is easy to show that Win[b, e] = 0

4. For other cases

Win[b, e] = (!Win[b, e− 1])|(!Win[b+ 1, e])

= (Win[b, e− 2] & Win[b+ 1, e− 1])|(Win[b+ 1, e− 1] & Win[b+ 2, e])

it is easy to show that Win[b, e] = Win[b+ 1, e− 1].

Problem Tutorial: “Subsequence Queries”
There are well-known DP to calculate the number of subsequences of string. In this problem, we use
|Σ| = 52 symbols. But in this tutorial, we will use only 3 symbols. Generalization is straightforward.

Transition in DP can be represented as a matrix. A0, A1, A2 are matrix for each symbol.

A0 =

1 1 1 1
0 1 0 0
0 0 1 0
0 0 0 1

 A1 =

1 0 0 0
1 1 1 1
0 0 1 0
0 0 0 1

 A2 =

1 0 0 0
0 1 0 0
1 1 1 1
0 0 0 1

For string S = c1c2 · · · cl, the number of subsequences of S is,

Page 3 of 5

Day 5: Grand Prix of South Korea
Petrozavodsk Winter Training Camp 2018, Sunday, February 4, 2018

1
1
1
1

T

Acl · · ·Ac2Ac1

0
0
0
1

The number of subsequences of substring ci · · · cj can represent as the same way.

1
1
1
1

T

AcjAcj−1 · · ·Aci+1Aci

0
0
0
1

Each matrix has its inverse.

A−1
0 =

1 −1 −1 −1
0 1 0 0
0 0 1 0
0 0 0 1

 A−1
1 =

1 0 0 0
−1 1 −1 −1
0 0 1 0
0 0 0 1

 A−1
2 =

1 0 0 0
0 1 0 0
−1 −1 1 −1
0 0 0 1

Thus,

1
1
1
1

T

Acj · · ·Aci

0
0
0
1

 =

1
1
1
1

T

Acj · · ·AciAci−1 · · ·Ac1A
−1
c1 · · ·A−1

ci−1

0
0
0
1

Let Ii = A−1

c1 · · ·A−1
ci , Jj = Acj · · ·Ac1 , and I0 = I (Identity matrix) for convenience.

First, Ii = Ii−1A
−1
ci . We represent Ii with four column vector vi,0, · · · , vi,3 and assume that ci = 0.

vi−1,0

vi−1,1

vi−1,2

vi−1,3

T

1 −1 −1 −1
0 1 0 0
0 0 1 0
0 0 0 1

 =

vi−1,0

vi−1,1 − vi−1,0

vi−1,2 − vi−1,0

vi−1,3 − vi−1,0

T

For reduce calculation complexity, we use common subtracting column vector Di for Ii. Now,

vi−1,0 −Di−1

vi−1,1 −Di−1

vi−1,2 −Di−1

vi−1,3 −Di−1

T

1 −1 −1 −1
0 1 0 0
0 0 1 0
0 0 0 1

 =

vi−1,0 −Di−1

vi−1,1 − vi−1,0

vi−1,2 − vi−1,0

vi−1,3 − vi−1,0

T

=

vi,0 −Di

vi,1 −Di

vi,2 −Di

vi,3 −Di

T

Let Di = vi−1,0, then vi,0 = 2vi−1,0 − Di−1, vi,1 = vi−1,1, vi,2 = vi−1,2 and vi,3 = vi−1,3. Note that only
vi,0 is changed.

Page 4 of 5

Day 5: Grand Prix of South Korea
Petrozavodsk Winter Training Camp 2018, Sunday, February 4, 2018

Second, Jj = AcjJj−1. We represent Jj with four row vector uj,0, · · · , uj,3 and assume that cj = 0. Let
Sj = uj,0 + uj,1 + uj,2 + uj,3 for convenience.

1 1 1 1
0 1 0 0
0 0 1 0
0 0 0 1

uj−1,0

uj−1,1

uj−1,2

uj−1,3

 =

Sj−1

uj−1,1

uj−1,2

uj−1,3

 =

uj,0
uj,1
uj,2
uj,3

Thus, Sj = 2Sj−1 − uj−1,0. Note that only uj,0 is changed.

Now, we can calculate the number of subsequences of substring ci · · · cj easily.

1
1
1
1

T

Acj · · ·Aci

0
0
0
1

 =

1
1
1
1

T

JjIi−1

0
0
0
1

 =

1
1
1
1

T

uj,0
uj,1
uj,2
uj,3

vi−1,0 −Di−1

vi−1,1 −Di−1

vi−1,2 −Di−1

vi−1,3 −Di−1

T

0
0
0
1

=

1
1
1
1

T

uj,0
uj,1
uj,2
uj,3

vi−1,0 −Di−1

vi−1,1 −Di−1

vi−1,2 −Di−1

vi−1,3 −Di−1

T

0
0
0
1

 = (uj,0 + uj,1 + uj,2 + uj,3) (vi−1,3 −Di−1)

= Sj

((
0 0 0 1

)T −Di−1

)
vi,3 =

(
0 0 0 1

)T because this cannot be changed. Note that we don’t need to maintain all of u, v
vectors, but need to maintain all of D,S vectors.

Overall time complexity is O
(
(N +Q)|Σ|

)
and memory complexity is O

(
N |Σ|+ |Σ|2

)
Problem Tutorial: “XOR Transformation ”
For F 2k

K (X) =
[
gk,0(X), gk,1(X), · · · , gk,N−1(X)

]
, we can prove that

gk,i(X) =

K−1⊕
j=0

x(i+2k×j) mod N

They are XOR of the elements in the step 2k. Thus, we can get each g values in O(N) time complexity
with prefix XOR (in the step 2k).

And apply repeated squaring, we can get F T
K(X).

Page 5 of 5

