
0 Oleksandr Kulkov Contest 1, Editorial 1

Tritwise Mex Consider collection of k setsH(1), . . . ,H(k) such thatH(i) = Z∩[0;ni) and k algebraic
operations f (i) : H(i) ×H(i) → H(i). let’s construct cartesian product H = H(1) × · · · ×H(k) which
consists of vectors with i-th component lying in H(i). There is total of n = n1 × · · · × nk such vectors
and we may enumerate them by numbers from Z∩ [0;n) in lexicographical order. Let’s define operation
f : H ×H → H obtained by component-wise applying of operations f (i)(·, ·). Now for two sequences
a = {a1, . . . , an} and b = {b1, . . . , bn} from elements over integral domain K we have to find their
convolution c = {c1, . . . , cn} over operation f(·, ·):

ck =
∑

f(i,j)=k

ai · bj

Common idea here would be to make a transition into space where it is made by component-wise
multiplication. Thus we have to find three families of mappings Ui, Vi andWi from Kn to K such that:

W1(c) = U1(a) · V1(b),
W2(c) = U2(a) · V2(b),
. . . ,

Wt(c) = Ut(a) · Vt(b).

We may rewrite this system via Hadamard (component-wise) product: W (c) = U(a)◦V (b). Let’s only
consider linear mappings, thus U , V and W are simply matrices. Many examples show that:

Theorem. Let W (t)(c) = U (t)(a) ◦ V (t)(b) where a, b ∈ H(t), c are convolutions of a and b over
function f (t), U (t), V (t) and W (t) are some linear mappings. If we consider U , V and W such that:

U = U (1) ⊗ · · · ⊗ U (k),

V = V (1) ⊗ · · · ⊗ V (k),

W =W (1) ⊗ · · · ⊗W (k).

where A⊗B is Kronecker product of matrices A and B, then for any a, b ∈ H holds W (c) = U(a)◦V (b).

Proof. We will use some tensors here.1 Consider operator ravel(xi1...it) which writes down all com-
ponents of tensor in lexicographical order of their indices and returns tensor of first rank (which is
vector) made up of these components. You may check that:

ravel
(
A

(1)
j1i1

. . . A
(t)
jtit

xi1...it

)
= (A(1) ⊗ · · · ⊗A(t)) · ravel(xi1...it)

In this way Kronecker product of two matrices corresponds to their tensor product. Note that a, b and
c may be presented by the tensor of rank k with dimensionalities n1, . . . , nk which allows us to write:

cl1,...,lk = s
(1)
l1i1j1

. . . s
(k)
lkikjk

ai1...ikbb1...bk ,

s
(t)
kij =

{
1, for k = f (t)(i, j),

0, for k 6= f (t)(i, j)

1Here tensors are considered not as objects of linear algebra which hold mappings but rather as multidimensional
arrays to which we apply Einstein summation rules. Thus in terms of tensors we should say that basis in our space is
chosen once and for all. Otherwise we couldn’t say about Hadamard product at all because it doesn’t hold invariance
under the change of coordinates and therefor can’t be written by pure tensors.

Nonetheless given that basis is fixed, “tensors” we consider are correct presentations for some specific mappings we are
interested in. Moreover we will say that basis is orthonormal and the space is Euclidean thus we may not distinguish
covariant and contravariant components of tensors.

0 Oleksandr Kulkov Contest 1, Editorial 2

It almost allow us to formulate theorem in tensors. Let’s rewrite Hadamard product via tensors:

(a ◦ b)α = δαijaibj ,

δαij =

{
1, forα = i = j,

0, otherwise

Now statement which we aim to prove may be formulated in the following way:

W
(1)
α1l1

. . .W
(k)
αklk

s
(1)
l1i1j1

. . . s
(k)
lkikjk

ai1...ikbj1...jk = δα1x1y1 . . . δαkxkykU
(1)
x1i1

. . . U
(k)
xkik

ai1...ikV
(1)
y1j1

. . . V
(k)
ykjk

bj1...jk

Where U (t), V (t) and W (t) satisfy following equation:

W
(t)
αl s

(t)
lija
′
ib
′
j = δαxyU

(t)
xi a

′
iV

(t)
yj b

′
j

Here a′ and b′ are arbitrary vectors. Unlike matrix equations, we may freely rearrange multipliers in
tensor formulas as long as we keep the order of their indices. Thus this equation due to a′ and b′ being
arbitrary implies equity of considered tensors:

W
(t)
αl s

(t)
lij = δαxyU

(t)
xi V

(t)
yj

Multiplying left and right parts over all t we obtain what we need:

W
(1)
α1l1

. . .W
(k)
αklk

s
(1)
l1i1j1

. . . s
(k)
lkikjk

= δα1x1y1 . . . δαkxkylU
(1)
x1i1

. . . U
(k)
xkik

V
(1)
y1j1

. . . V
(k)
ykjk

That means that if we may quickly calculate convolution in each H(i) separately, then we may also
do it for the whole H. In practice it may be done via simple recursion which you should be familiar
with if you know about Walsh-Hadamard transform.

Now to our particular problem. Let’s write ci for operation mex(·, ·):
c0 = a1b1 + a1b2 + a2b1 + a2b2,

c1 = a0b0 + a0b2 + a2b0,

c2 = a0b1 + a1b0.

We may immediately see main invariant (c0 + c1 + c2) = (a0 + a1 + a2)(b0 + b1 + b2). Unfortunately
we can’t stay in 3-dimensional space to solve the problem, thus we should introduce new variable c3:

c0 = (a1 + a2)(b1 + b2),

(c0 + c1 + c2) = (a0 + a1 + a2)(b0 + b1 + b2),

(c1 + c3) = (a0 + a2)(b0 + b2),

c3 = a2b2

Note that for this problem we’ve got U = V 6=W . Also note that solution actually works in O(4k).

Associativity Degree Using some brute-force we may note the following properties:

1. Solution always exists when n > 2.

2. Solution still exists if we say i ◦ j ≤ 3.

3. Solution still exists if we say i ◦ j = 1 for i > 3.

0 Oleksandr Kulkov Contest 1, Editorial 3

Furthermore you may consider operations described by matrices of the following specific kind:

1. First row of matrix is of form 1a2b3c.

2. Second row of matrix is of form 1d3e1f .

3. Third row of matrix is of form 1g3h2i.

4. min(a, b) = 0

5. d ≤ 2

Matrices of such form proved to cover all possible k at least for n ≤ 100 and as you may see,
there are only O(n4) of them. You may come up with algorithm to check associativity degree of such
matrices in O(1) which will provide you O(n4) solution to the problem overall.

MHC Consider series
∞∑
k=0

akx
k where ak is the charge in (k + 1)-th section. initially a0 = −1 and

all the others are equal to 0. Each second all beams go forward which corresponds to multiplying this
series by x, after that they’re either copied which corresponds to addition of the same series to the
new one, or copied with inversion which corresponds to subtraction of the same series from the new
one. Thus after n seconds we’ll have the following series:

−(x+ 1)α(x− 1)n−α

Here α is the total number of copies without inversion. As you see, order of signs doesn’t matter. Now
if we know α we may calculate values in all sections. Let’s write down the value in (k + 1)-th section:

−[xk](x+ 1)α(x− 1)n−α = (−1)n+α+k+1
k∑
i=0

(−1)i
(
α

i

)(
n− α
k − i

)
Up to (−1)α multiplier it’s the polynomial of α, let’s denote it as Pk(x). Now our problem is: we have
a family of polynomials Pi(x) which we may calculate explicitly and unknown number α. By our query
we may calculate arbitrary Pk(α), in the end we’ll have to recover α. To handle this let’s recall that
P (x) = P (α) ⇐⇒ P (x) − P (α) ≡ 0 (mod x − α). Thus knowing Pi(α) we may calculate greatest
common divisor of polynomials Pi(x) − Pi(α), which must be divisible by x − α. given that we may
choose k arbitrary from sufficiently large pool, calculated gcd will be almost always equal to x − α,
which may be checked explicitly for given constraints.

Basis Change For linear recurrence Fn =
k∑
i=1

ak−iFn−i let:

A =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
a0 a1 a2 . . . ak−1

 ,Fn−k =


Fn−k
. . .
Fn−2
Fn−1



Then one can see that Fn = AFn−1 = AnF0. We want to find such {ci}ki=1 that Fn =
k∑
i=1

ciFn−bi .

It can be reformulated in matrix form as:

AnF0 =

(
k∑
i=1

ciA
n−bi

)
F0

0 Oleksandr Kulkov Contest 1, Editorial 4

This equation must hold for all n ≥ bk and every possible F0. Note that if this equation holds for
some n, it also holds for all n′ > n. Thus we have to resolve it for the minimum possible n which is
bk. Also since F0 is arbitrary we can consider it as matrix equation:

Abk =

k∑
i=1

ciA
bk−bi

This one can be resolved in O(n4) via gaussian elimination. But we want to improve that. Let’s
see what happens to the first row of An when we multiply this matrix by A. It will change like:

(r0, r1, . . . , rn−1)→ rn−1 · (a0, a1, . . . , ak−1) + (0, r1, . . . , rn−2)

One can see that it is clearly the same transform as for:

P (x) =

n−1∑
i=0

rix
i → x · P (x) mod

(
xk −

k−1∑
i=0

aix
i

)
With P (x) = 1 for A0 = E we can see that first row of An composed of coefficients in:

xn mod

(
xk −

k−1∑
i=0

aix
i

)

If we denote C(x) = xk −
k−1∑
i=0

aix
i then we can say that:

An =


xn mod C(x)
xn+1 mod C(x)

. . .
xn+k−1 mod C(x)


Thus if equation holds for first row of the matrix it will also hold for other rows as well. So the

only thing left for us to do is to resolve equation:

xbk =

k∑
i=1

cix
bk−bi mod

(
xk −

k−1∑
i=0

aix
i

)
This equation actually can be considered as system of linear equations with k variables and k

equations if we calculate each summand modulo C(x) and will set an equation for each term. Thus
the problem can be solved in O(k3) with gaussian elimination.

Note that calculation of the summand with given modulo can be done in O(k2 log bk) in naive way
with binary exponentiation or in O(k log k log bk) with FFT approach. First one will actually give you
O(k3 log bk) solution, which was ok for the problem.

Scored Nim It may be proven by induction that greedily taking one stone at time from any heap

with odd number of stones (or any heap if there is none) is sufficient. Thus the answer is
⌈(

n∑
i=1

ai

)
/2

⌉
.

Milliarium Aureum We may consider each minor road (u, v) separately. Each road may ban some
vertices w from being Rome, namely those that these road may change widest distance to u or v. That
is, for d(w, u) > d(w, v) must hold min(d(w, u), c) > d(w, v). That means that vertex w is affected if
d(w, u) 6= d(w, v) and min(d(w, u), d(w, v)) < c. Let the thinnest edge on the path from u to v be x.
Obviously, if x ≥ c, we may ignore this minor road, it’ll never relax distances because you may get
not worse answer going from u to v via major roads instead. Now what if x < c? Then at least u and

0 Oleksandr Kulkov Contest 1, Editorial 5

v may no longer be Rome. What else? Consider connected components we have if we consider only
major roads with length more than x. You may see that vertices in connected components of u and
v will be banned and only those, because for all other vertices will hold d(w, u) = d(w, v) = min(x, y)
where y is the thinnest edge on the path from w to some vertex lying on the path between u and v.

One of ways to find out which vertices were killed is to add major roads one by one from largest
to smallest keeping connected components of vertices and process queries of kind “kill all vertices in
connected component of v”. If you merge components efficiently, it will take O(n log n) overall.

Permutant You may prove that if permutation is not cyclic, then the answer is 0. Otherwise it’s
the determinant of some cyclic matrix up to −1 multiplier. Cyclic matrix is the matrix of form:

Cn =


a1 a2 . . . an−1 an
an a1 . . . an−2 an−1
...

...
. . .

...
...

a3 a4 . . . a1 a2
a2 a3 . . . an a1


Let A(x) =

n∑
i=0

aix
i, it may be proven that detCn =

n−1∏
k=0

A
(
ωk
)
where ω = e

2πi
n is the n-th complex

root of unity. It is known that B(x) =
n−1∏
i=0

(x−ωi) = xn−1. Let’s generalize it to arbitrary polynomials

A(x) and B(x) so we may reduce our problem to the simpler one.

Consider polynomials A(x) =
n∑
i=0

aix
i and B(x) =

m∑
i=0

bix
i such that an 6= 0 and bm 6= 0. Let

λ1, . . . , λn be the roots of A(x) and µ1, . . . , µm be the roots of B(x) counted with their multiplicities.
Then we may define resultant of polynomials A(x) and B(x):

R(A,B) = bnm

m∏
i=1

A(µi) = amn b
n
m

∏
1≤i≤n
1≤j≤m

(µj − λj) = (−1)nmamn
n∏
i=1

B(λi)

It’s immediately seen from definition that:

1. R(A,B) = (−1)nmR(B,A).

2. R(A,B) = amn b
n
m when n = 0 or m = 0.

3. If bm = 1 then R(A− CB,B) = R(A,B) for arbitrary polynomial C(x) and n,m ≥ 1.

4. From this follows R(A,B) = b
deg(A)−deg(A−CB)
m R(A− CB,B) for arbitrary A(x), B(x), C(x).

These properties allow us calculate resultant alongside Euclidean algorithm, which works in O(n2).

The Game of Chance Let’s calculate expected value for n turns:

dpn =
1

m

m∑
i=1

max(i− dpn−1, dpn−1 − i) =
1

m

m∑
i=1

|i− dpn−1|

We will search for answer as the fixed point x of such transform.

mx =

bxc∑
k=1

(x− k) +
m∑

k=bxc+1

(k − x) = x(2bxc −m)− bxc(bxc+ 1)

2
+

(m+ bxc+ 1)(m− bxc)
2

x =
m+ bxc+ 1

4
− bxc(bxc+ 1)

4(m− bxc)

0 Oleksandr Kulkov Contest 1, Editorial 6

Taking a note that |x − bxc| < 1 we may say that bxc ∼ x and make an estimate of it by solving
4(m− x)x = (m+ x+ 1)(m− x)− x(x+ 1). We will have that (you should check for ±1 manually):

bxc ∼

⌊
2m+ 1−

√
2m2 + 2m+ 1

2

⌋

After we found bxc, we may simply put it in explicit formula for x above. This will give you O(1)
solution, it is also possible to find bxc with binary search to has O(logm) solution.

Incomparable Pairs I tried to go easy on you with string challenges this time :)
Let total amount of distinct substring of s be x, then the answer is sum over all distinct substrings t

of s of distinct substrings of t subtracted from x(x+1)/2. Now to get the sum of distinct substrings over
all distinct substrings, let’s for each prefix count number of new substrings which occured in it for the
first time. Let this amount on prefix [1, i] be j we may say that new substrings are [1, i], [2, i], . . . , [j, i].
There is a way to keep track in O(n log2 n) of the number of substrings which lastly occured in position
k when prefix [1, i] via some additions on segments, it’s used, for example, when you need to count the
number of distinct substrings of some particular substring. Now if that number is ak then for prefix

[1, i] you have to add to the answer value
i∑

k=1

min(k, j)ak =
j−1∑
k=1

kak +
i∑

k=j

jak. That will provide you

with O(n log2 n) solution to the problem.

The Zong of the Zee There are two possibilities. Either we may get rid of all question marks or
all question marks must be replaced by the same letter. To check this we should keep count of how
many times each letter occured in each row and taking maximum of this value over all rows. In the
end sum of all such values will be either n, so we may get rid of question marks or n − 1, so sets of
letters on each row are the same. Assume we got rid of all question marks. Then for each prefix and
suffix of each column of length m − 1 we should calculate how many times does it occur, it may be
efficiently done via hashes. Then for each string which occurs as either prefix or suffix we should check
that it occurs as prefix and suffix same amount of times. Let this amount be x, we should multiply x!
over all possible strings. Note that some permutations may be counted more than once, but we may
resolve it because if permutation occurs for two different letters then it’s always the permutation we
may get by pasting some arbitrary letter which didn’t occur among ones in input, so let amount of

such permutations be π0, we should sum up π0 +
126∑
c=33

(πc − π0) where πc is amount of permutations

satisfying substitute of question marks by c. Overall complexity is O(n2).

Expected Value It may be proven by induction that answer is a1 − a2.

