Difference between revisions of "2019 Multi-University,Nowcoder Day 2"

From EOJ Wiki
Jump to navigation Jump to search
(Created page with "== Problem A == Solved by Weaver_zhu && Kilo_5723. 01:36:01 (+2) == Problem B == Unsolved. == Problem C == Unsolved. == Problem D == Unsolved. == Problem E == Unsolve...")
 
Line 30: Line 30:
  
 
Solved by Xiejiadong. 03:43:42 (+2)
 
Solved by Xiejiadong. 03:43:42 (+2)
 +
 +
题意:求全 $1$ 的次大矩阵面积。
 +
 +
题解:考虑最大矩阵如何做,对于每一行考虑这一行作为底的最大矩形面积。
 +
 +
这个就变成了经典的最大广告牌问题,用单调栈维护每个位置向左向右最多能拓展的长度,即可算出最的矩形。
 +
 +
对于次大的矩形,考虑裁掉最大矩形的四个角,在分别算最大的矩形面积,取这四个中的较大值即可。
 +
 +
脑子不动,暗示 Weaver_zhu 写了三个小时的三分,于是这题爆炸了。
  
 
== Problem I ==
 
== Problem I ==

Revision as of 11:38, 20 July 2019

Problem A

Solved by Weaver_zhu && Kilo_5723. 01:36:01 (+2)

Problem B

Unsolved.

Problem C

Unsolved.

Problem D

Unsolved.

Problem E

Unsolved.

Problem F

Upsolved by Weaver_zhu. (-1)

Problem G

Unsolved.

Problem H

Solved by Xiejiadong. 03:43:42 (+2)

题意:求全 $1$ 的次大矩阵面积。

题解:考虑最大矩阵如何做,对于每一行考虑这一行作为底的最大矩形面积。

这个就变成了经典的最大广告牌问题,用单调栈维护每个位置向左向右最多能拓展的长度,即可算出最的矩形。

对于次大的矩形,考虑裁掉最大矩形的四个角,在分别算最大的矩形面积,取这四个中的较大值即可。

脑子不动,暗示 Weaver_zhu 写了三个小时的三分,于是这题爆炸了。

Problem I

Unsolved.

Problem J

Solved by Kilo_5723. 04:37:15 (+6)