Difference between revisions of "2019 CCPC Online Contest"
Line 71: | Line 71: | ||
题解:首先,我们要花费 $k$ 分钟钓上第一条鱼。接下来,可以证明模型可以转化为把 $n-1$ 次钓鱼时间分配给每一个 $t_i$,而每一条鱼花费的时间是煮的时间与分配的钓鱼时间的较大值。 | 题解:首先,我们要花费 $k$ 分钟钓上第一条鱼。接下来,可以证明模型可以转化为把 $n-1$ 次钓鱼时间分配给每一个 $t_i$,而每一条鱼花费的时间是煮的时间与分配的钓鱼时间的较大值。 | ||
− | 对于每一个 $t_i$,可以免费分配 $\lfloor \frac{t_i}{k} \rfloor$ 次,这之后分配一次的代价是 $k- t_i\;{\rm mod}\;k$。对每一个 $k- t_i\;{\rm mod}\;k$ | + | 对于每一个 $t_i$,可以免费分配 $\lfloor \frac{t_i}{k} \rfloor$ 次,这之后分配一次的代价是 $k- t_i\;{\rm mod}\;k$。对每一个 $k- t_i\;{\rm mod}\;k$ 排序,选出其中较小的几个和之前免费分配的凑出 $n-1$。 |
== Problem I == | == Problem I == |
Revision as of 08:00, 24 August 2019
Problem A
Solved by Xiejiadong. 00:19:03 (+1)
题意:给出 $A$ 和 $B$ ,求最小的 $C$ 使得 $(A\; xor \; C)\; and \; (B\; xor\; C)$ 。
题解:按位考虑,显然只有在 $A$ 和 $B$ 同时为 $1$ 的时候, $C$ 才需要为 $1$ 。
那么显然,其他情况肯定是 $0$ 最优。
但又需要保证是正整数,所以想办法在 $A$ 和 $B$ 不想等的位置上,让 $C=1$ ,这样可以不影响 $(A\; xor \; C)\; and \; (B\; xor\; C)$ 的结果。
如果不存在这样的位置,那就只能 $C=1$ 让结果变大了。
Problem B
Solved by Xiejiadong && Kilo_5723. 04:27:56 (+2)
题意:要求支持两个操作,给一个数增加 $10^7$ ,询问一个前缀区间,求一个数,满足 $\ge k$ ,且与前缀区间中的每一个数都不同。
题解:每一个数增加了就是增加 $10^7$ ,而 $k\le 10^6$ ,相当于从区间里删掉了这个数。
给出的是一个排列,考虑维护每一个数所在的位置,于是就变成了求后缀区间第一个大于 $r$ 的位置。
线段树维护一下就好了。
Problem C
Solved by Xiejiadong. 03:00:29 (+)
题意:求字符串中和一个子串相同的第 $k$ 次出现的开始位置。
题解:无脑上 SAM ,对于每一个询问,找到询问的子串所在的结点。
方法是,先定位到 endpos $=r$ 的结点,然后在后缀树上二分向上倍增找到子串所在的状态。
于是剩下的问题,就是询问每一个状态的 endpos 集合中第 $k$ 大数,可以在树上启发式合并,用平衡树维护一下第 $k$ 大数就好了。
好像是个 SA 的经典题,直接在 height 上搞就好了。
Problem D
Solved by Kilo_5723. 03:06:41 (+1)
Problem E
Solved by Weaver_zhu. 01:03:31 (+)
Problem F
Solved by Kilo_5723. 00:17:27 (+1)
题意:给出一副写有数字的牌,每一次把一个数字的牌抽到第一张,求最后的牌的序列。
题解:按照抽牌的倒序拿出还未拿出的牌,再在原来的牌里顺序拿出还未拿出的牌。
Problem G
Solved by Kilo_5723. 00:06:32 (+)
题意:按题意生成一个 $2^k \times 2^k$ 的 $C/P$ 矩阵。
题解:根据题意模拟。
Problem H
Solved by Kilo_5723. 01:16:27 (+)
题意:池塘里有 $n$ 条鱼,抓一条鱼上来要 $k$ 分钟,煮第 $i$ 条鱼需要 $t_i$ 分钟。同一时间只能煮一条鱼,鱼一旦开始煮,直到煮好都不能拿出,求最少花多少时间把所有鱼都钓上来煮好。
题解:首先,我们要花费 $k$ 分钟钓上第一条鱼。接下来,可以证明模型可以转化为把 $n-1$ 次钓鱼时间分配给每一个 $t_i$,而每一条鱼花费的时间是煮的时间与分配的钓鱼时间的较大值。
对于每一个 $t_i$,可以免费分配 $\lfloor \frac{t_i}{k} \rfloor$ 次,这之后分配一次的代价是 $k- t_i\;{\rm mod}\;k$。对每一个 $k- t_i\;{\rm mod}\;k$ 排序,选出其中较小的几个和之前免费分配的凑出 $n-1$。
Problem I
Unsolved.
Problem J
Unsolved.
Problem K
Unsolved.