Python 语言程序设计(2017 年秋)

1036. 整数的质因子分解

单点时限: 2.0 sec

内存限制: 256 MB

一个整数可唯一地分解为一些不同质因子的若干次方的乘积。即:对于一个大于 $1 $ 的整数 $a$,可表示为:

$a = p_1^{e1} * p_2^{e2} \cdots p_r^{e_r}$

其中:$p_i$ 中为质数,$p_1 < p_2 < \cdots <p_r,e_i $为正整数

例如:$6000 = 2^4 * 3^1 * 5^3,e_i$ 为正整数

输入格式

第 1 行:整数 $T(1 \leqslant T \leqslant 10000)$为问题数

第 2 ∽ T+1 行:每个问题的 $a(2 \leqslant a \leqslant 20000)$。

输出格式

对于每个问题,在一行中输出 $p_i​$ 和 $e_i​$。

格式$:(p_1,e_1)(p_2,e_2) \cdots (p_r,e_r)$

样例

Input
3
2
6000
19997
Output
(2,1)
(2,4)(3,1)(5,3)
(19997,1)
不限期开放

题目列表