7 人解决,10 人已尝试。
7 份提交通过,共有 17 份提交。
6.6 EMB 奖励。
单点时限: 2.0 sec
内存限制: 256 MB
The snooker-table is n regular polygon shaped.The start point of the ball is P0 on the edge A1A2 and it will touch P1(a point on A2A3) and then P2,P3…Pn-1 on the edges A3A4,A5A6,.....AnA1 and the final touch is another dot on line A1A2 Pn.Assume the angle A2P0P1 is t.t is ranging from t1 to t2. The length of each edge is 2.
An integer n(100>=n>=3):the number of the regular polygon’s edges.
The range of tan(t) :t1,t2. 3 digits of fraction should be remained.
4
0.667 1.000
7 人解决,10 人已尝试。
7 份提交通过,共有 17 份提交。
6.6 EMB 奖励。