1393. Maximal orders of permutations

单点时限: 2.0 sec

内存限制: 256 MB

A permutation of n elements is a one-to-one function (injection) p: {1,2,…,n} -> {1,2,…,n}. An order of permutation p is the minimal k >= 1, such that for all i=1,2,…,n we have:

, i.e. p composed with itself k times becomes identity function. For example, the order of the permutation of 3 elements p(1)=3, p(2)=2, p(3)=1 is 2, because p(p(1))=1, p(p(2))=2, p(p(3))=3.

For a given n let us consider permutations of n-elements having the the largest order possible. For example, the maximal order of a permutation of 5 elements is 6. An example of a permutation of 5 elements whose order is 6 is p(1)=4, p(2)=5, p(3)=2, p(4)=1, p(5)=3.

Among all permutations of n elements having the maximal order, we would like to find the earliest one (in a lexycographic order). Being more precise, we say a permutation p of n elements is earlier than a permutation r of n elements, if there is i, such that p(j) = r(j) for all j < i and p(i) < r(i). The earliest permutation of 5 elements having an order 6 is p(1)=2,p(2)=1,p(3)=4,p(4)=5,p(5)=3.

Task

Write a programme that:

reads from the standard input a set of integers n1,n2,…,nd,

for each number ni (for i=1,2,…,d) determines the earliest permutation of ni elements havaing the maximal order,

writes the determined permutations to the standard output.

输入格式

There is one positive integer d in the first line of the standard input, 1 <= d <= 10. In the following d lines there are positive integers n1, n2, …, nd, one per line, 1 <= ni <= 10.000.

输出格式

Your programme should write d lines to the standard output. The ith line should contain a sequence of integers separated by spaces, forming the least permutation of ni elements having the maximal order, i.e. the sequence p(1), p(2), …, p(ni), where p denotes this permutation.

样例

Input
2
5
14
Output
2 1 4 5 3
2 3 1 5 6 7 4 9 10 11 12 13 14 8

1 人解决,3 人已尝试。

6 份提交通过,共有 15 份提交。

9.9 EMB 奖励。

创建: 17 年,3 月前.

修改: 7 年,2 月前.

最后提交: 3 年,12 月前.

来源: POI

题目标签