1525. Numbering Paths

单点时限: 2.0 sec

内存限制: 256 MB

Background

Problems that process input and generate a simple yes'' orno’‘ answer are called decision problems. One class of decision problems, the NP-complete problems, are not amenable to general efficient solutions. Other problems may be simple as decision problems, but enumerating all possible ``yes’‘ answers may be very difficult (or at least time-consuming).

This problem involves determining the number of routes available to an emergency vehicle operating in a city of one-way streets.

The Problem

Given the intersections connected by one-way streets in a city, you are to write a program that determines the number of different routes between each intersection. A route is a sequence of one-way streets connecting two intersections.

Intersections are identified by non-negative integers. A one-way street is specified by a pair of intersections. For example, j k indicates that there is a one-way street from intersection j to intersection k. Note that two-way streets can be modeled by specifying two one-way streets: j k and k j .

Consider a city of four intersections connected by the following one-way streets:

0 1

0 2

1 2

2 3

There is one route from intersection 0 to 1, two routes from 0 to 2 (the routes are

0->1->2 and 0->2 ), two routes from 0 to 3, one route from 1 to 2, one route from 1 to 3, one route from 2 to 3, and no other routes.

It is possible for an infinite number of different routes to exist. For example if the intersections above are augmented by the street 3 2 , there is still only one route from 0 to 1, but there are infinitely many different routes from 0 to 2. This is because the street from 2 to 3 and back to 2 can be repeated yielding a different sequence of streets and hence a different route. Thus the route 0->2->3->2->3->2 is a different route than 0->2->3->2 .

输入格式

The input is a sequence of city specifications. Each specification begins with the number of one-way streets in the city followed by that many one-way streets given as pairs of intersections. Each pair j k represents a one-way street from intersection j to intersection k. In all cities, intersections are numbered sequentially from 0 to the ``largest’‘ intersection. All integers in the input are separated by whitespace. The input is terminated by end-of-file.

There will never be a one-way street from an intersection to itself. No city will have more than 30 intersections.

输出格式

For each city specification, a square matrix of the number of different routes from intersection j to intersection k is printed. If the matrix is denoted M, then M[j][k] is the number of different routes from intersection j to intersection k. The matrix M should be printed in row-major order, one row per line. Each matrix should be preceded by the string ``matrix for city k’‘ (with k appropriately instantiated, beginning with 0).

If there are an infinite number of different paths between two intersections a -1 should be printed. DO NOT worry about justifying and aligning the output of each matrix. All entries in a row should be separated by whitespace.

样例

Input
7 0 1 0 2 0 4 2 4 2 3 3 1 4 3
5
0 2
0 1 1 5 2 5 2 1
9
0 1 0 2 0 3
0 4 1 4 2 1
2 0
3 0
3 1
Output
matrix for city 0
0 4 1 3 2
0 0 0 0 0
0 2 0 2 1
0 1 0 0 0
0 1 0 1 0
matrix for city 1
0 2 1 0 0 3
0 0 0 0 0 1
0 1 0 0 0 2
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
matrix for city 2
-1 -1 -1 -1 -1
0 0 0 0 1
-1 -1 -1 -1 -1
-1 -1 -1 -1 -1
0 0 0 0 0

1 人解决,3 人已尝试。

2 份提交通过,共有 5 份提交。

9.9 EMB 奖励。

创建: 17 年,5 月前.

修改: 7 年,4 月前.

最后提交: 1 年,6 月前.

来源: UVa

题目标签