1 人解决,5 人已尝试。
2 份提交通过,共有 28 份提交。
9.9 EMB 奖励。
单点时限: 5.0 sec
内存限制: 256 MB
The cows have taken up the game of checkers with a vengeance. Unfortunately, despite their unlimited enjoyment of playing, they are terrible at the endgame and want your help.
Given an $N \times N$ ($4 \le N \le 500$) checkboard, determine the optimal set of moves (i.e., smallest number of moves) to end the game on the next move. Checkers move only on the ‘+’ squares and capture by jumping ‘over’ an opponent’s piece in the traditional way. The piece is removed as soon as it is jumped. See the example below where $N=8$:
- + - + - + - + The K's mark Bessie's kings; the o's represent the
+ - + - + - + - opponent's checkers. Bessie always moves next. The
- + - K - + - + Kings jump opponent's checkers successively in any
+ - + - + - + - diagonal direction (and removes pieces when jumped).
- o - o - + - +
+ - K - + - + - For this board, the best solution requires the lower
- o - + - + - + left King to jump successively across all three of the
+ - K - + - K - opponents' checkers, thus ending the game (moving K
marked as >K<):
Original
- + - + - + - +
- + - K - + - +
+ - + - + - + -
- o - o - + - +
+ - K - + - + -
- o - + - + - +
+ ->K<- + - K -
After move 1
- + - + - + - +
+ - + - + - + -
- + - K - + - +
+ - + - + - + -
- o - o - + - +
>K<- K - + - + -
- + - + - + - +
+ - + - + - K -
After move 2
- + - + - + - +
+ - + - + - + -
- + - K - + - +
+ ->K<- + - + -
- + - o - + - +
+ - K - + - + -
- + - + - + - +
+ - K - + - K -
After move 3
- + - + - + - +
+ - + - + - + -
- + - K - + - +
+ - + - + - + -
- + - + - + - +
+ - K ->K<- + -
- + - + - + - +
+ - K - + - K -
The moves traversed these squares:
1 2 3 4 5 6 7 8 R C
1 - + - + - + - + start: 8 3
2 + - + - + - + - move: 6 1
3 - + - K - + - + move: 4 3
4 + - * - + - + - move: 6 5
5 - o - o - + - +
6 * - K - * - + -
7 - o - + - + - +
8 + - K - + - K -
Write a program to determine the game-ending sequence for an $N \times N$ input board if it exists. There is at least a king and at least one opponent piece on the board. The king can jump a piece on every move of the optimal solution.
Line 1: A single integer: $N$
Lines 2..N+1: Line $i+1$ contains $N$ characters (each one of: ‘-‘, ‘+’, ‘K’, or ‘o’) that represent row $i$ of a proper checkboard. Line 2 always begins with ‘-‘.
8 -+-+-+-+ +-+-+-+- -+-K-+-+ +-+-+-+- -o-o-+-+ +-K-+-+- -o-+-+-+ +-K-+-K-
8 3 6 1 4 3 6 5
1 人解决,5 人已尝试。
2 份提交通过,共有 28 份提交。
9.9 EMB 奖励。