**65 人解决**，249 人已尝试。

**112 份提交通过**，共有 1336 份提交。

**6.2** EMB 奖励。

**单点时限: **2.0 sec

**内存限制: **256 MB

Problems in Computer Science are often classified as belonging to a certain class of problems (e.g., NP, Unsolvable, Recursive). In this problem you will be analyzing a property of an algorithm whose classification is not known for all possible inputs.

Consider the following algorithm:

input n while n is not 1: print n if n is odd then n=3*n+1 else n=n/2 print 1

Given the input `22`

, the following sequence of numbers will be printed `22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1`

It is conjectured that the algorithm above will terminate (when a `1`

is printed) for any integral input value. Despite the simplicity of the algorithm, it is unknown whether this conjecture is true. It has been verified, however, for all integers such that (and, in fact, for many more numbers than this.)

Given an input , it is possible to determine the number of numbers printed (including the ). For a given this is called the cycle-length of . In the example above, the cycle length of is .

For any two numbers and you are to determine the maximum cycle length over all numbers between and .

The input will consist of a series of pairs of integers and , one pair of integers per line. All integers will be less than and greater than .

You should process all pairs of integers and for each pair determine the maximum cycle length over all integers between and including and .

The input contains no more than 100 cases.

For each pair of input integers and you should output , , and the maximum cycle length for integers between and including and . These three numbers should be separated by at least one space with all three numbers on one line and with one line of output for each line of input. The integers and must appear in the output in the same order in which they appeared in the input and should be followed by the maximum cycle length (on the same line).

Input

1 10 100 200 201 210 900 1000

Output

1 10 20 100 200 125 201 210 89 900 1000 174