**9 人解决**，12 人已尝试。

**10 份提交通过**，共有 26 份提交。

**6.0** EMB 奖励。

**单点时限: **2.0 sec

**内存限制: **256 MB

Bessie was poking around the ant hill one day watching the ants march to and fro while gathering food. She realized that many of the ants were siblings, indistinguishable from one another. She also realized the sometimes only one ant would go for food, sometimes a few, and sometimes all of them. This made for a large number of different sets of ants!

Being a bit mathematical, Bessie started wondering. Bessie noted that the hive has $T$ $(1 \leq T \leq 1~000)$ families of ants which she labeled $1$..$T$ ($A$ ants altogether). Each family had some number $N_i$ $(1 \leq N_i \leq 100)$ of ants.

How many groups of sizes $S, S+1, \ldots, B$ $(1 \leq S \leq B \leq A)$ can be formed?

While observing one group, the set of three ant families was seen as ${1, 1, 2, 2, 3}$, though rarely in that order. The possible sets of marching ants were:

- 3 sets with 1 ant: {1} {2} {3}
- 5 sets with 2 ants: {1,1} {1,2} {1,3} {2,2} {2,3}
- 5 sets with 3 ants: {1,1,2} {1,1,3} {1,2,2} {1,2,3} {2,2,3}
- 3 sets with 4 ants: {1,2,2,3} {1,1,2,2} {1,1,2,3}
- 1 set with 5 ants: {1,1,2,2,3}

Your job is to count the number of possible sets of ants given the data above.

- Line 1: 4 space-separated integers: $T,A,S,B$
- Lines 2..$A+1$: Each line contains a single integer that is an ant type present in the hive

Line 1: The number of sets of size $S$..$B$ (inclusive) that can be created. A set like ${1,2}$ is the same as the set ${2,1}$ and should not be double-counted. Print only the **LAST SIX DIGITS** of this number, with no leading zeroes or spaces.

Input

3 5 2 3 1 2 2 1 3

Output

10

INPUT DETAILS:

Three types of ants (1..3); 5 ants altogether. How many sets of size 2 or size 3 can be made?

OUTPUT DETAILS:

5 sets of ants with two members; 5 more sets of ants with three members

**9 人解决**，12 人已尝试。

**10 份提交通过**，共有 26 份提交。

**6.0** EMB 奖励。

题目标签