Difference between revisions of "ACM-ICPC 2015 Asia Tsukuba Regional"
Xiejiadong (talk | contribs) |
Xiejiadong (talk | contribs) |
||
Line 66: | Line 66: | ||
Solved by Xiejiadong. 00:12:07(+) | Solved by Xiejiadong. 00:12:07(+) | ||
+ | |||
+ | 非常温暖的签到。 | ||
== Problem B == | == Problem B == |
Revision as of 13:53, 7 October 2018
ECNU Foreigners
Problem A
Solved by zerol. 00:15 (+)
温暖的签到。
Problem B
Solved by zerol & ultmaster. 00:24 (+)
题意:求最小距离,使得两块板之间可以塞下题给的所有木棍(不能交换顺序)。
题解:贪心往左放即可。依次计算每根木棍最左可以放到哪儿。
Problem C
Solved by ultmaster. 01:39 (+4)
题意:你在一个图上走。每次老大哥会从预先准备好的三个数中挑一个,然后你必须要走这么多步,你只能决定怎么走。你走投无路或者死循环了就输了。求你从起点到终点,在最坏情况下,要几轮?
题解:典型的博弈 DP。然而会有出现环的情况,在某些情况下某些点会算不对。不知道怎么搞……(其实是因为之前有个题没补)
在尝试了若干假算法之后,ultmaster 提出要不把这个东西迭代 1000 轮。然后就……顺利地 AC 了?
Problem D
Solved by kblack. 01:42 (+)
题意:在一个矩形内,每个人有一个直角的视野,在墙上挂钟使得每个人都能至少看到一个钟。
题解:直角视野对应周长上的一个区间,然后就是一个在环上丽娃河装路灯的问题。我们枚举第一个钟的位置,之后贪心地尽量靠后安装。
Problem E
Solved by ultmaster. 03:50 (+)
题意:定义一种带前导零的数之间的全序关系:按照如下三维依次从小到大:数位和、数位加 1 之积、数字本身大小。求在该意义下的 $n$ 位整数中比 $n$ 为整数 $x$ 小的数有多少个。
题解:枚举组合。由插板法,在极限情况下满足第一维和第二维小的也至多 $\binom{23}{9} \approx 8 \times 10^5$,对每种情况用多重组合公式算排列即可。
剩下的要比较数字本身的大小。可以考虑一种数位 DP 和状压 DP 的 mixture。要记录已经用过了哪些位、是否可以随便选。复杂度是 $\mathcal{O} (n 2^n \cdot 10)$。还要乘以满足第一维和第二维的组合有多少个。剩下的问题是,这个东西会不会很多呢?U 大胆认为它不会,但 Z 觉得不大靠谱,所以先占机写了 G。
Problem F
Solved by kblack. 04:22 (+9)
题意:$p$ 个进程,$r$ 种资源,判断从哪一次资源分配后无法靠安排之后的顺序解决死锁。
题解:无法避免死锁的点存在二分性,因为能跑完的进程一定先跑完更好,通过类似 [1] 的方式贪心判断是否能全部跑完,需要注意一些边界情况。
Problem G
Solved by zerol. 03:31 (+)
题意:给一个字符串 s,求所有 s 是其子序列的最短回文串中第 k 大的。
题解:首先用 dp 求出每个区间扩展成回文的最小代价和方案。然后按位枚举求出第 k 大。
One,Two,Three,AK
Problem A
Solved by Xiejiadong. 00:12:07(+)
非常温暖的签到。
Problem B
Solved by oxx1108. 00:31:20(+)
Problem C
Solved by oxx1108. 02:34:32(+3)
Problem D
Upsolved by oxx1108 && dreamcloud. (-6)
Problem E
Solved by dreamcloud. 01:26:11(+1)
Problem F
Unsolved.
Problem G
Solved by Xiejiadong. 04:24:25(+)
Problem H
Unsolved.
Problem I
Unsolved.
Problem J
Unsolved.
Problem K
Unsolved.