Difference between revisions of "2018 ACM-ICPC Xuzhou Regional Onsite"
Jump to navigation
Jump to search
Line 21: | Line 21: | ||
题意:从给定的若干条路径中选取 k 条,使得路径交至少为 1 个点。 | 题意:从给定的若干条路径中选取 k 条,使得路径交至少为 1 个点。 | ||
− | 题解:枚举路径交的 LCA,设为 u。设有 s 条路径经过了 u,有 c 条路径的 LCA 恰好是 u,那么这个点上的计数是 $\binom{s}{k} - \binom{c}{k}$。LCA + | + | 题解:枚举路径交的 LCA,设为 u。设有 s 条路径经过了 u,有 c 条路径的 LCA 恰好是 u,那么这个点上的计数是 $\binom{s}{k} - \binom{c}{k}$。LCA + 差分前缀和 + 预处理组合数就好了。 |
== Problem H == | == Problem H == |
Revision as of 07:48, 28 October 2018
Replay
Problem A
Solved by kblack. 00:50 (+3)
此处省略一万字。
Problem F
Unsolved. (-11)
题意:求一个字符串 S 中的非空子串 T 的数量,满足不存在 TP 是 S 的子串且 TP 和 PT 完全一致。
题解(伪):如果 P 的长度小于 T,那么 P 的最小循环节是 T 的循环节,否则 T 是 P 的循环节。后缀树上启发式合并得到出现位置集同时维护相邻两个位置的差 d。一个长度为 $l$ 的子串不计当且仅当 $d \le \frac l2$ 或 $l=d$,用 pb_ds 和 set 随便维护一下就能 T 到生活不能自理了。
Problem G
Solved by zerol. 01:14 (+)
题意:从给定的若干条路径中选取 k 条,使得路径交至少为 1 个点。
题解:枚举路径交的 LCA,设为 u。设有 s 条路径经过了 u,有 c 条路径的 LCA 恰好是 u,那么这个点上的计数是 $\binom{s}{k} - \binom{c}{k}$。LCA + 差分前缀和 + 预处理组合数就好了。
Problem H
Solved by kblack. 03:05 (+2)
题意:$n$ 个区间,$k$ 染色使得有 $k$ 种颜色的区间最长。
题解:扫描线,贪心,set 里扔缺的颜色和可用线段,每当颜色不够 $k$ 的时候才延迟区间染色。
Problem M
Solved by kblack & ultmaster. 02:17 (+1)