Difference between revisions of "CCPC-Final 2018"

From EOJ Wiki
Jump to navigation Jump to search
Line 27: Line 27:
 
== Problem G ==
 
== Problem G ==
  
Solved by ultmaster. 00:29 (+1)
+
Solved by ultmaster. 00:36 (+)
  
 
题意:求 $n \times m$ 的棋盘上,选两个长方形,使得第一个长方形完全包含于第二个长方形之中,边界不能重合,的方案数。
 
题意:求 $n \times m$ 的棋盘上,选两个长方形,使得第一个长方形完全包含于第二个长方形之中,边界不能重合,的方案数。

Revision as of 00:28, 26 November 2018

Replay

ultmaster:

  • 两小时就结束了。

Problem A

Solved by zerol. 00:14 (+)

Problem B

Solved by kblack. 01:31 (+)

题意:骑士站边,贡献不同,有些其实合不拢,求最大值与最小值差的最小值。

题解:先并查集求出所有联通块的站边方案,然后二分差值,把所有骑士分身两边后排序,滑动窗口划过去,判断所有联通块是否有机会全部满足。

Problem D

Unsolved. (-3)

ultmaster: 代码相当宏伟。

kblack: 不甘心!ciya.gif

Problem G

Solved by ultmaster. 00:36 (+)

题意:求 $n \times m$ 的棋盘上,选两个长方形,使得第一个长方形完全包含于第二个长方形之中,边界不能重合,的方案数。

题解:在一维上考虑,方案数是 $\binom{n}{4} + \binom{n}{3}$。两维的问题分开算乘一乘就好。

Problem H

博弈真好玩。

Problem I

Solved by zerol. 01:51 (+)

Problem K

Solved by kblack. 00:29 (+1)

题意:破解 RSA,离散数学期中考试题。

题解:暴力破出 $n=pq$,求个幂,指数是 $2^{30}+3$ 对 $\phi(n) = (p-1)(q-1)$ 的逆元。

Problem L

Solved by ultmaster. 00:55 (+)

题意:把一个数拆成六个素数的和。

题解:同拆成两个、拆成三个的做法。小的情况暴算,大的话分出 2 2 2 2 或 2 2 2 3 来使得剩下一个不小于 4 的偶数。然后利用哥德巴赫猜想,枚举小的那个质数,暴力判断大的那个是否是质数就可以了。比赛中为了稳健写了 Miller-Rabin,其实根本不需要。