Difference between revisions of "ITMO Chinese Winter Camp -Day4"

From EOJ Wiki
Jump to navigation Jump to search
Line 51: Line 51:
 
Upsolved by Xiejiadong. (-8)
 
Upsolved by Xiejiadong. (-8)
  
题意:求$i_1,i_2$...$i_k$满足$1\le i_1<i_2<$...$<i_k\le n$,且使得$max{(w_{i_1}+w_{i_2}),(w_{i_2}+w_{i_3},$...$(w_{i_k}+w_{i_1}))}最小。
+
题意:求$i_1,i_2\cdots i_k$满足$1\le i_1<i_2<\cdots <i_k\le n$,且使得$max{(w_{i_1}+w_{i_2}),(w_{i_2}+w_{i_3},\cdots ,(w_{i_k}+w_{i_1}))}最小。
  
 
题解:
 
题解:

Revision as of 11:52, 24 January 2019

ITMO Chinese Winter Camp Day4

Statements

Solutions

Slides of tutorial

Problem A

Solved by Xiejiadong. 00:19:49(+)

题意:求$B_1$进制下位数为$D_1$和$B_2$进制下位数为$D_2$的数一共有几个。

题解:求两个进制下位数为$D$的范围,取个交就好了。但要注意可能会爆long long,用除法来比较就不会出问题了。

Problem B

Solved by Kilo. 00:12:01(+1)

Problem C

Solved by Weaver_zhu. 00:10:53(+)

Problem D

Solved by Kilo. 00:43:10(+1)

Problem E

Solved by Kilo && Weaver_zhu. 04:10:23(+)

Problem F

Solved by Xiejiadong. 02:42:20(+3)

题意:每个物品只有一件,求放到背包里再也装不下东西的方案有多少。

题解:枚举正好塞不下的物品是哪一件,即剩下不拿的物品里面最小的物品是哪一件。

这样的话,比这个物品小的,肯定全部要塞下去,剩下比他大的物品,再背一遍0/1背包。

有个坑点就是,所有的物品都放下了,背包还是没有溢出,按照题意,这算是一种方案。

Problem G

Unsolved.

Problem H

Upsolved by Xiejiadong. (-8)

题意:求$i_1,i_2\cdots i_k$满足$1\le i_1<i_2<\cdots <i_k\le n$,且使得$max{(w_{i_1}+w_{i_2}),(w_{i_2}+w_{i_3},\cdots ,(w_{i_k}+w_{i_1}))}最小。

题解:

Problem I

Solved by Kilo. 01:50:23(+2)

Problem J

Unsolved.

Problem K

Unsolved.