Difference between revisions of "CCPC-Wannafly Winter Camp Day2 (Div 1)"

From EOJ Wiki
Jump to navigation Jump to search
Line 49: Line 49:
 
== Problem K ==
 
== Problem K ==
  
Unsolved.
+
Solved.
 +
 
 +
这题目也太卡常了。
 +
 
 +
题意:$12$根火柴,分成四组,最多能有给足可以构成三角形。
 +
 
 +
题解:直接暴力,TLE。我们只能先把所有的集合情况预处理出来。
 +
 
 +
处理的方法是,用$12$的阶乘,默认$3$个$3$个分组,为了保证不重不漏,要求$3$个内部有序,而且每组的第一个有序,即$a[k]<a[k+1]<a[k+2](k\equiv 0(mod\; 3))$而且$a[1]<a[4]<a[7]<a[10]$。
 +
 
 +
然后每一组数据,都是根据预处理出来的集合情况来枚举所有火柴的分组情况。
 +
 
 +
这样的时间复杂度正好贴着时限。
  
 
== Problem L ==
 
== Problem L ==
  
 
Unsolved.
 
Unsolved.

Revision as of 02:59, 4 February 2019

CCPC-Wannafly Winter Camp Day2 (Div 1)

Problem A

Unsolved.

Problem B

Unsolved.

Problem C

Unsolved.

Problem D

Unsolved.

Problem E

Unsolved.

Problem F

Unsolved.

Problem G

Unsolved.

Problem H

Solved.

温暖的签到题。

题意:给出$n$个互不相交的球,求出每个球与大球交集的体积之和。

题解:对于每个球,只需要保存半径和距离大球的距离。可以通过积分求出交集部分体积公式,特判并求和即可。

Problem I

Unsolved.

Problem J

Unsolved.

Problem K

Solved.

这题目也太卡常了。

题意:$12$根火柴,分成四组,最多能有给足可以构成三角形。

题解:直接暴力,TLE。我们只能先把所有的集合情况预处理出来。

处理的方法是,用$12$的阶乘,默认$3$个$3$个分组,为了保证不重不漏,要求$3$个内部有序,而且每组的第一个有序,即$a[k]<a[k+1]<a[k+2](k\equiv 0(mod\; 3))$而且$a[1]<a[4]<a[7]<a[10]$。

然后每一组数据,都是根据预处理出来的集合情况来枚举所有火柴的分组情况。

这样的时间复杂度正好贴着时限。

Problem L

Unsolved.