Difference between revisions of "2012 ACM-ICPC World Finals"
Jump to navigation
Jump to search
(Created page with "== Problem A == Unsolved. == Problem B == Solved by zerol. 01:36 (+) == Problem C == Solved by ultmaster. 02:20 (+) == Problem D == Solved by kblack. 01:16 (+) == Prob...") |
|||
Line 42: | Line 42: | ||
Solved by kblack. 03:04 (+) | Solved by kblack. 03:04 (+) | ||
+ | |||
+ | 题意:若干堆从小到大的的碟子,拆开和重新叠上,最少的步数整理成一堆。 | ||
+ | |||
+ | 题解:先分析答案的计算,假装原始堆是颜色,那么使用的步数等于 $2*(C+1)-n-1$,其实 $C$ 是从上到下颜色的变化次数。对于同一种大小的碟子,变化数已经固定了,关键是不同的大小之间是否能减少变化数,相邻每对长度都有一些可以用,除了一种大小全是同一种颜色外,两边的颜色都要不同(相同并不会更好),对于可以用的颜色序列正反搞一搞(超过三种的一定好),还剩能用的都是好的。 | ||
== Problem L == | == Problem L == | ||
Unsolved. | Unsolved. |
Revision as of 11:52, 9 March 2019
Problem A
Unsolved.
Problem B
Solved by zerol. 01:36 (+)
Problem C
Solved by ultmaster. 02:20 (+)
Problem D
Solved by kblack. 01:16 (+)
Problem E
Solved by zerol & ultmaster. 04:18 (+2)
Problem F
Unsolved.
Problem G
Unsolved.
Problem H
Unsolved.
Problem I
Unsolved.
Problem J
Unsolved.
Problem K
Solved by kblack. 03:04 (+)
题意:若干堆从小到大的的碟子,拆开和重新叠上,最少的步数整理成一堆。
题解:先分析答案的计算,假装原始堆是颜色,那么使用的步数等于 $2*(C+1)-n-1$,其实 $C$ 是从上到下颜色的变化次数。对于同一种大小的碟子,变化数已经固定了,关键是不同的大小之间是否能减少变化数,相邻每对长度都有一些可以用,除了一种大小全是同一种颜色外,两边的颜色都要不同(相同并不会更好),对于可以用的颜色序列正反搞一搞(超过三种的一定好),还剩能用的都是好的。
Problem L
Unsolved.