Difference between revisions of "Training 2: Probability and Expectation"

From EOJ Wiki
Jump to navigation Jump to search
Line 10: Line 10:
  
 
Solved by Kilo_5723 && Weaver_zhu.
 
Solved by Kilo_5723 && Weaver_zhu.
 +
 +
题意:两个人在一个无向联通图的两点上,每个人在第 $i$ 个点上有 $p_i$ 的概率留在原点,有 $1-p_i$ 的概率从所有连边中随机选择一条出边去别的房间。每一个时刻,两人按如上规则随机移动,求两个人第一次选择去同一个房间时,这个房间是每个房间的概率。
 +
 +
题解:将两个人各自所在房间的二元组 $(a,b)$ 设为一个状态,将每个状态到达每个终态 $a=b$ 的概率设为未知量,对每一个二元组可能到达的二元组状态列出方程,高斯消元求解即可。
  
 
== Problem C ==
 
== Problem C ==

Revision as of 15:18, 8 May 2019

Problem A

Solved by Kilo_5723 && Weaver_zhu.

题意:给定一个无向联通图,每一条边有一个权值,从起点开始每次随机选一条边走,问走到终点时,走过的所有边权值异或和的期望值。

题解:对于边权的每一个二进制位分别求解,将每个点到终点路径异或和的期望值设为未知数,对每一个点及其所有出边列出方程,高斯消元求解即可。

Problem B

Solved by Kilo_5723 && Weaver_zhu.

题意:两个人在一个无向联通图的两点上,每个人在第 $i$ 个点上有 $p_i$ 的概率留在原点,有 $1-p_i$ 的概率从所有连边中随机选择一条出边去别的房间。每一个时刻,两人按如上规则随机移动,求两个人第一次选择去同一个房间时,这个房间是每个房间的概率。

题解:将两个人各自所在房间的二元组 $(a,b)$ 设为一个状态,将每个状态到达每个终态 $a=b$ 的概率设为未知量,对每一个二元组可能到达的二元组状态列出方程,高斯消元求解即可。

Problem C

Solved by Kilo_5723.

Problem D

Solved by Kilo_5723.

Problem E

Solved by Kilo_5723.

Problem F

Solved by Kilo_5723.

Problem G

Solved by Kilo_5723.

Problem H

Solved by Kilo_5723.