Difference between revisions of "Training 2: Probability and Expectation"
Jump to navigation
Jump to search
Xiejiadong (talk | contribs) |
Xiejiadong (talk | contribs) |
||
Line 10: | Line 10: | ||
Solved by Kilo_5723 && Weaver_zhu. | Solved by Kilo_5723 && Weaver_zhu. | ||
+ | |||
+ | 题意:两个人在一个无向联通图的两点上,每个人在第 $i$ 个点上有 $p_i$ 的概率留在原点,有 $1-p_i$ 的概率从所有连边中随机选择一条出边去别的房间。每一个时刻,两人按如上规则随机移动,求两个人第一次选择去同一个房间时,这个房间是每个房间的概率。 | ||
+ | |||
+ | 题解:将两个人各自所在房间的二元组 $(a,b)$ 设为一个状态,将每个状态到达每个终态 $a=b$ 的概率设为未知量,对每一个二元组可能到达的二元组状态列出方程,高斯消元求解即可。 | ||
== Problem C == | == Problem C == |
Revision as of 15:18, 8 May 2019
Problem A
Solved by Kilo_5723 && Weaver_zhu.
题意:给定一个无向联通图,每一条边有一个权值,从起点开始每次随机选一条边走,问走到终点时,走过的所有边权值异或和的期望值。
题解:对于边权的每一个二进制位分别求解,将每个点到终点路径异或和的期望值设为未知数,对每一个点及其所有出边列出方程,高斯消元求解即可。
Problem B
Solved by Kilo_5723 && Weaver_zhu.
题意:两个人在一个无向联通图的两点上,每个人在第 $i$ 个点上有 $p_i$ 的概率留在原点,有 $1-p_i$ 的概率从所有连边中随机选择一条出边去别的房间。每一个时刻,两人按如上规则随机移动,求两个人第一次选择去同一个房间时,这个房间是每个房间的概率。
题解:将两个人各自所在房间的二元组 $(a,b)$ 设为一个状态,将每个状态到达每个终态 $a=b$ 的概率设为未知量,对每一个二元组可能到达的二元组状态列出方程,高斯消元求解即可。
Problem C
Solved by Kilo_5723.
Problem D
Solved by Kilo_5723.
Problem E
Solved by Kilo_5723.
Problem F
Solved by Kilo_5723.
Problem G
Solved by Kilo_5723.
Problem H
Solved by Kilo_5723.