Difference between revisions of "2019 Multi-University,HDU Day 4"

From EOJ Wiki
Jump to navigation Jump to search
Line 39: Line 39:
 
Solved by Xiejiadong. 01:23:54 (+)
 
Solved by Xiejiadong. 01:23:54 (+)
  
题意:询问一段区间 $a_l,a_{l+1},\cdots a_r$ 中元素 ${|a_1-p|,|a_{l+1}-p|,\cdots ,|a_r-p|}$ 中的 $k$ 大数。
+
题意:询问一段区间 $a_l,a_{l+1},\cdots a_r$ 中元素 $\{|a_1-p|,|a_{l+1}-p|,\cdots ,|a_r-p|\}$ 中的 $k$ 大数。
  
 
题解:利用主席树可以维护一个区间里面一段值域里面元素的个数。
 
题解:利用主席树可以维护一个区间里面一段值域里面元素的个数。

Revision as of 10:40, 31 July 2019

Problem A

Solved by Kilo_5723. 00:12:16 (+1)

Problem B

Unsolved.

Problem C

Unsolved. (-3)

Problem D

Unsolved.

Problem E

Unsolved.

Problem F

Unsolved.

Problem G

Solved by Xiejiadong && Weaver_zhu. 02:45:41 (+1)

题意:判断十五数码问题是否无解。

题解:在 Xiejiadong 的强行误导下, Weaver_zhu 写了两个小时 A* 。

直接大力猜结论,大概模拟一下 $0$ 位置的变动。

根据 $0$ 所在位置的行列奇偶性和分行和列的逆序对数量奇偶行相同即可。

Problem H

Solved by Xiejiadong. 01:23:54 (+)

题意:询问一段区间 $a_l,a_{l+1},\cdots a_r$ 中元素 $\{|a_1-p|,|a_{l+1}-p|,\cdots ,|a_r-p|\}$ 中的 $k$ 大数。

题解:利用主席树可以维护一个区间里面一段值域里面元素的个数。

对于每个询问二分答案,假设当前答案为 $mid$ ,那么我们需要查询区间里面值域为 $[p-mid,p+mid]$ 的元素个数,元素个数恰好为 $k$ 的就是答案。

Problem I

Unsolved.

Problem J

Solved by Kilo_5723 && Xiejiadong. 04:09:28 (+1)