Difference between revisions of "2019 Multi-University,HDU Day 9"
Xiejiadong (talk | contribs) |
Xiejiadong (talk | contribs) |
||
Line 15: | Line 15: | ||
题解:可以把答案看作每个 $g_m(i)$ 的 $i-1$ 部分的贡献总和,试求每一个 $i-1$ 对 $g_m(n)$ 有多少贡献。 | 题解:可以把答案看作每个 $g_m(i)$ 的 $i-1$ 部分的贡献总和,试求每一个 $i-1$ 对 $g_m(n)$ 有多少贡献。 | ||
− | 我们发现,假设 $i-1$ 对 $k$ 的贡献是 $f_i(k) \cdot (i-1) $,则 $f_i(i)=1,f_i(k)= \frac{2}{k} \cdot \sum_{j=i}^{k-1} f_i(j) (k>i)$。我们发现,\begin{ | + | 我们发现,假设 $i-1$ 对 $k$ 的贡献是 $f_i(k) \cdot (i-1) $,则 $f_i(i)=1,f_i(k)= \frac{2}{k} \cdot \sum_{j=i}^{k-1} f_i(j) (k>i)$。我们发现,\begin{aligned} |
&f_i(k+1) | &f_i(k+1) | ||
=&\frac{2}{k+1} \cdot \sum_{j=i}^{k} f_i(j) | =&\frac{2}{k+1} \cdot \sum_{j=i}^{k} f_i(j) | ||
=&\frac{2}{k+1} \cdot (f_i(k)+\sum_{j=i}^{k-1}f_i(j)) | =&\frac{2}{k+1} \cdot (f_i(k)+\sum_{j=i}^{k-1}f_i(j)) | ||
− | =&\frac{2}{k+1} \cdot (1+\frac{2}{k}) \cdot \sum_{j=i}^{k-1}f_i(j)\frac{2}{k+1} \cdot \frac{k+2}{k} \cdot \frac{k}{2} \cdot( \frac{2}{k} \cdot \sum_{j=i}^{k-1}f_i(j)) | + | =&\frac{2}{k+1} \cdot (1+\frac{2}{k}) \cdot \sum_{j=i}^{k-1}f_i(j)\frac{2}{k+1} \cdot \frac{k+2}{k} \cdot \frac{k}{2} \cdot( \frac{2}{k} \cdot \sum_{j=i}^{k-1}f_i(j)) |
+ | \end{equation} | ||
补充:发现了函数中 $i>m$ 的部分可以改写成 $g_m(i)=i-1+\frac{2}{i}\sum_{j=0}^{i-1} g_m(j)$。 | 补充:发现了函数中 $i>m$ 的部分可以改写成 $g_m(i)=i-1+\frac{2}{i}\sum_{j=0}^{i-1} g_m(j)$。 |
Revision as of 14:50, 19 August 2019
Problem A
Solved by Kilo_5723. 02:16:39 (+)
题意:给出\begin{equation} g_m(i)=\left\{ \begin{aligned} &0&(1 \le i \le m) \\ &i-1+\frac{1}{i}\sum_{j=1}^i(g_m(j-1)+g_m(i-j))&(m<i) \end{aligned} \right. \end{equation} 求 $g_m(n)$。
题解:可以把答案看作每个 $g_m(i)$ 的 $i-1$ 部分的贡献总和,试求每一个 $i-1$ 对 $g_m(n)$ 有多少贡献。
我们发现,假设 $i-1$ 对 $k$ 的贡献是 $f_i(k) \cdot (i-1) $,则 $f_i(i)=1,f_i(k)= \frac{2}{k} \cdot \sum_{j=i}^{k-1} f_i(j) (k>i)$。我们发现,\begin{aligned} &f_i(k+1) =&\frac{2}{k+1} \cdot \sum_{j=i}^{k} f_i(j) =&\frac{2}{k+1} \cdot (f_i(k)+\sum_{j=i}^{k-1}f_i(j)) =&\frac{2}{k+1} \cdot (1+\frac{2}{k}) \cdot \sum_{j=i}^{k-1}f_i(j)\frac{2}{k+1} \cdot \frac{k+2}{k} \cdot \frac{k}{2} \cdot( \frac{2}{k} \cdot \sum_{j=i}^{k-1}f_i(j)) \end{equation}
补充:发现了函数中 $i>m$ 的部分可以改写成 $g_m(i)=i-1+\frac{2}{i}\sum_{j=0}^{i-1} g_m(j)$。
Problem B
Solved by Xiejiadong && Kilo_5723. 03:38:23 (+)
题意:给出一些从边界出发的直线,求平面被分割成了几块。
题解:可以对交点分类讨论,因为保证了出发点不会同行也不会同列,所以只有两种交点是有贡献的:
- + 交点,且贡献为 $1$ ;
- 」 交点,贡献为 $0.5$ ,且只出现在边界上,共 $4$ 个,贡献为 $1$ 。
所以统计 + 交点个数,+1 就好了,需要区间加,单点询问,直接上树状数组。
Problem C
Upsolved by Kilo_5723 && Xiejiadong. (-5)
Problem D
Solved by Weaver_zhu. 00:15:48 (+)
Problem E
Solved by Kilo_5723. 04:07:47 (+9)
Problem F
Unsolved.
Problem G
Unsolved.
Problem H
Unsolved.
Problem I
Unsolved.
Problem J
Unsolved.
Problem K
Unsolved.