Difference between revisions of "Project Euler"

From EOJ Wiki
Jump to navigation Jump to search
Line 61: Line 61:
 
答案:1739023853137。
 
答案:1739023853137。
  
###Problem 357
+
==Problem 357==
 
Solved by Weaver_zhu
 
Solved by Weaver_zhu
  
Line 70: Line 70:
 
答案:748317
 
答案:748317
  
###Problem 601
+
==Problem 601==
 
Solved by Weaver_zhu
 
Solved by Weaver_zhu
  
Line 79: Line 79:
 
答案:1617243
 
答案:1617243
  
###Problem 501
+
==Problem 501==
 
Solved by Weaver_zhu
 
Solved by Weaver_zhu
  
Line 85: Line 85:
 
题意:分解素因子,分为一个素数的七次方,两个素数其中一个三次方和另一个相乘,三个不同素数相乘三种情况。学到一个新姿势Lehmer,0.5s求$\Pi(n),n<=10^{11}$,很强大。剩下的就是枚举较小的素数了。三个不同情况看起来是$n^2$的,但是枚举较小的两个加特判条件跳出循环其实会很快。最后程序运行9s。
 
题意:分解素因子,分为一个素数的七次方,两个素数其中一个三次方和另一个相乘,三个不同素数相乘三种情况。学到一个新姿势Lehmer,0.5s求$\Pi(n),n<=10^{11}$,很强大。剩下的就是枚举较小的素数了。三个不同情况看起来是$n^2$的,但是枚举较小的两个加特判条件跳出循环其实会很快。最后程序运行9s。
 
答案:197912312715
 
答案:197912312715
 
###Problem 637
 
Unsolved
 
 
题意:将n拆数字把数字和相加视为一次操作,如123可以拆成1,2,3合并成6或者1,23合并成24。定义$f(n,m)$为在m进制下最小步骤拆成个位数。定义$g(N,s_1,s_2)$为$\sum_{i=1}^{N}i$其中$f(i,s_1) = f(i,s_2)$。求$g(10^7,10,3)$
 
 
目前思路:枚举拆分($2^{len}枚举隔板)+dp可以$O(nlog(n))$,过了$g(100,10,3)=3302$然而好不容易跑出$10^7$的交上去不对。。要自闭了。目前错误的答案是48865374683407
 

Revision as of 15:00, 26 December 2018

挖了一个大坑,天知道什么时候能填完。感觉是不可能填完的。

Problem 1

Multiples of 3 and 5

Solved by Xiejiadong & Czarina.

题意:$1000$以下约数包含$3$和$5$的数和。

题解:直接暴力/等差数列求和。

答案:233168。

Problem 2

Problem 35

Circular primes

Solved by Xiejiadong.

题意:求$10^6$以下循环串组成的数都是质数的数的个数。

题解:先把质数用筛选法筛出来,然后暴力枚举判断,时间复杂度$O(6*10^6)$。

答案:55。

Problem 36

Double-base palindromes

Solved by Xiejiadong.

题意:求$10^6$以下满足十进制和二进制都是回文数的所有数和。

题解:枚举二进制的长度,dfs暴力所有的二进制数,再判断十进制数是否符合题意。

为了防止重复,我们要在制定二进制的长度以后,默认第一位必须是$1$。

这样做的复杂度会比直接判断的小一些。

答案:872187。

Problem 357

Prime generating integers

Solved by Xiejiadong.

题意:求满足$x\le 10^8$且所有$x$的约数$y$满足$y+x/y$是质数的所有$x$的和。

题解:筛选法求质数,然后直接暴力判断,需要一些小优化。

有一个情况是,我们假设$x/y=z$,那么$y\times z=x$,$y+\frac{x}{y}=\frac{x}{z}+z$

这样,我们可以假设$y<z$,也就是说,枚举的时候只需要枚举到$\sqrt{x}$即可。

看起来复杂度是$O(n\sqrt{n})$,实际上,因为约数的关系,判断失败直接 break ,这样的时间复杂度是非常接近$O(nlogn)$的,很快就出解了。

答案:1739023853137。

Problem 357

Solved by Weaver_zhu

题意:统计这样的数,从左到右去掉数字和从右往左去掉数字组成的新数都是素数。已知总共只有11个这样的数。

题解:这样的数不会太大,因为素数的分布越来越稀疏。筛一边1e7的素数发现已经有11个了。所以只需要线性筛+暴力判断。

答案:748317

Problem 601

Solved by Weaver_zhu

题意:定义$streak(n)=k$ 其中 $(n+i)\mid(i+1), i<=1<k$ 而 $(n+k)\nmid(k+1)$定义$P(s,N)$为$streak(i)=s, 1<i<N$的$i$的个数。求$\sum_{i=1}^{31}{i, 4^i}$

题解:列出同余方程,很像CRT但是模数互不相同。用exgcd使两两方程合并到一个同余方程,然后再逐个判断是否$(n+k)\nmid(k+1)$。因为1到31不互素很多所以就算是合并了31个方程模数也不会爆long long。枚举长度为一个很大的模数的时候逐个枚举是可以接受的。

答案:1617243

Problem 501

Solved by Weaver_zhu

题意:求$10^{12}$以内因子个数恰好为8的数的个数。 题意:分解素因子,分为一个素数的七次方,两个素数其中一个三次方和另一个相乘,三个不同素数相乘三种情况。学到一个新姿势Lehmer,0.5s求$\Pi(n),n<=10^{11}$,很强大。剩下的就是枚举较小的素数了。三个不同情况看起来是$n^2$的,但是枚举较小的两个加特判条件跳出循环其实会很快。最后程序运行9s。 答案:197912312715