Difference between revisions of "2018 Multi-University, HDU Day 10"
Jump to navigation
Jump to search
Line 29: | Line 29: | ||
Solved by zerol. 02:19 (+4) | Solved by zerol. 02:19 (+4) | ||
− | 题意:对于两个点集 S_1, S_2,求 $\max{dist(x,y)+w_x+w_y | x\in S_1,y\in S_2}$,距离为曼哈顿距离,最多五维。 | + | 题意:对于两个点集 S_1, S_2,求 $\max\{dist(x,y)+w_x+w_y | x\in S_1,y\in S_2\}$,距离为曼哈顿距离,最多五维。 |
题解:K-D Tree 暴力,要多加一些剪枝才能过。 | 题解:K-D Tree 暴力,要多加一些剪枝才能过。 |
Revision as of 14:42, 22 August 2018
Problem C
Unsolved. (-32)
做自闭了。
Problem E
Solved by zerol. 01:18 (+2)
Problem G
Solved by zerol. 00:42 (+)
Problem H
Solved by ultmaster. 00:08 (+)
题意:求 $2^n$。
题解:高精度。或
printf("%.0f\n", pow(2, n));
Problem I
Solved by kblack. 00:51 (+)
Problem J
Solved by zerol. 02:19 (+4)
题意:对于两个点集 S_1, S_2,求 $\max\{dist(x,y)+w_x+w_y | x\in S_1,y\in S_2\}$,距离为曼哈顿距离,最多五维。
题解:K-D Tree 暴力,要多加一些剪枝才能过。
正解:枚举每一维绝对值的正负,记录 $2^5$ 种可能的最大值,将另一个点集带入,取最大值即可。
Problem L
Solved by kblack. 01:21 (+)