Difference between revisions of "2018 Multi-University, HDU Day 10"

From EOJ Wiki
Jump to navigation Jump to search
Line 29: Line 29:
 
Solved by zerol. 02:19 (+4)
 
Solved by zerol. 02:19 (+4)
  
题意:对于两个点集 S_1, S_2,求 $\max{dist(x,y)+w_x+w_y | x\in S_1,y\in S_2}$,距离为曼哈顿距离,最多五维。
+
题意:对于两个点集 S_1, S_2,求 $\max\{dist(x,y)+w_x+w_y | x\in S_1,y\in S_2\}$,距离为曼哈顿距离,最多五维。
  
 
题解:K-D Tree 暴力,要多加一些剪枝才能过。
 
题解:K-D Tree 暴力,要多加一些剪枝才能过。

Revision as of 14:42, 22 August 2018

Problem C

Unsolved. (-32)

做自闭了。

Problem E

Solved by zerol. 01:18 (+2)

Problem G

Solved by zerol. 00:42 (+)

Problem H

Solved by ultmaster. 00:08 (+)

题意:求 $2^n$。

题解:高精度。或

printf("%.0f\n", pow(2, n));

Problem I

Solved by kblack. 00:51 (+)

Problem J

Solved by zerol. 02:19 (+4)

题意:对于两个点集 S_1, S_2,求 $\max\{dist(x,y)+w_x+w_y | x\in S_1,y\in S_2\}$,距离为曼哈顿距离,最多五维。

题解:K-D Tree 暴力,要多加一些剪枝才能过。

正解:枚举每一维绝对值的正负,记录 $2^5$ 种可能的最大值,将另一个点集带入,取最大值即可。

Problem L

Solved by kblack. 01:21 (+)