Network Flow
Jump to navigation
Jump to search
Basic Dinic
const int INF = 1e9
const int maxn = 3000;
struct Edge {
Edge() {}
Edge(int from, int to, int cap, int flow) : from(from), to(to), cap(cap), flow(flow) {}
int from, to, cap, flow;
};
struct Dinic {
int n, m, s, t;
vector <Edge> edges;
vector<int> G[maxn];
bool vis[maxn];
int d[maxn];
int cur[maxn];
void init(int n, int s, int t) {
this->n = n, this->s = s, this->t = t;
for (int i = 0; i <= n; i++) G[i].clear();
edges.clear();
}
void AddEdge(int from, int to, int cap) {
edges.push_back(Edge(from, to, cap, 0));
edges.push_back(Edge(to, from, 0, 0));
m = edges.size();
G[from].push_back(m - 2);
G[to].push_back(m - 1);
}
bool BFS() {
memset(vis, 0, sizeof(vis));
queue<int> Q;
Q.push(s);
d[s] = 0;
vis[s] = true;
while (!Q.empty()) {
int x = Q.front();
Q.pop();
for (int i = 0; i < (int) G[x].size(); i++) {
Edge &e = edges[G[x][i]];
if (!vis[e.to] && e.cap > e.flow) {
vis[e.to] = true;
d[e.to] = d[x] + 1;
Q.push(e.to);
}
}
}
return vis[t];
}
int DFS(int x, int a) {
if (x == t || a == 0)return a;
int flow = 0, f;
for (int &i = cur[x]; i < (int) G[x].size(); i++) {
Edge &e = edges[G[x][i]];
if (d[x] + 1 == d[e.to] && (f = DFS(e.to, min(a, e.cap - e.flow))) > 0) {
e.flow += f;
edges[G[x][i] ^ 1].flow -= f;
flow += f;
a -= f;
if (a == 0) break;
}
}
return flow;
}
int Maxflow() {
int flow = 0;
while (BFS()) {
memset(cur, 0, sizeof(cur));
flow += DFS(s, INF);
}
return flow;
}
} DC;
int main() {
int T;
scanf("%d", &T);
for (int kase = 1; kase <= T; ++kase) {
int n, m;
scanf("%d%d", &n, &m);
DC.init(n, 1, n);
while (m--) {
int u, v, w;
scanf("%d%d%d", &u, &v, &w);
DC.AddEdge(u, v, w);
}
printf("Case %d: %d\n", kase, DC.Maxflow());
}
return 0;
}
MCMF (Bellman-Ford)
const int INF = 1e9;
const int maxn = 200 + 10;
struct Edge {
int from, to, cap, flow, cost;
Edge() {}
Edge(int f, int t, int c, int fl, int co) : from(f), to(t), cap(c), flow(fl), cost(co) {}
};
struct MCMF {
int n, m, s, t;
vector<Edge> edges;
vector<int> G[maxn];
bool inq[maxn];
int d[maxn];
int p[maxn];
int a[maxn];
void init(int n, int s, int t) {
this->n = n, this->s = s, this->t = t;
edges.clear();
for (int i = 0; i < n; ++i) G[i].clear();
}
void AddEdge(int from, int to, int cap, int cost) {
edges.push_back(Edge(from, to, cap, 0, cost));
edges.push_back(Edge(to, from, 0, 0, -cost));
m = edges.size();
G[from].push_back(m - 2);
G[to].push_back(m - 1);
}
bool BellmanFord(int &flow, int &cost) {
for (int i = 0; i < n; ++i) d[i] = INF;
memset(inq, 0, sizeof(inq));
d[s] = 0, a[s] = INF, inq[s] = true, p[s] = 0;
queue<int> Q;
Q.push(s);
while (!Q.empty()) {
int u = Q.front();
Q.pop();
inq[u] = false;
for (int i = 0; i < G[u].size(); ++i) {
Edge &e = edges[G[u][i]];
if (e.cap > e.flow && d[e.to] > d[u] + e.cost) {
d[e.to] = d[u] + e.cost;
p[e.to] = G[u][i];
a[e.to] = min(a[u], e.cap - e.flow);
if (!inq[e.to]) {
Q.push(e.to);
inq[e.to] = true;
}
}
}
}
if (d[t] == INF) return false;
flow += a[t];
cost += a[t] * d[t];
int u = t;
while (u != s) {
edges[p[u]].flow += a[t];
edges[p[u] ^ 1].flow -= a[t];
u = edges[p[u]].from;
}
return true;
}
int Min_cost() {
int flow = 0, cost = 0;
while (BellmanFord(flow, cost));
return cost;
}
} MM;
Applications
Maximum-weight closed subgraph
int main() {
cin >> n >> m;
for (int i = 1; i <= m; ++i)
cin >> b[i];
DC.init(n + m + 10, n + m + 1, n + m + 2);
for (int i = 1; i <= m; ++i)
DC.AddEdge(n + i, n + m + 2, b[i]);
for (int i = 1; i <= n; ++i) {
cin >> a >> k;
ans += a;
DC.AddEdge(n + m + 1, i, a);
for (int j = 1; j <= k; ++j) {
cin >> c[j];
DC.AddEdge(i, n + c[j], INF);
}
}
ans -= DC.Maxflow();
cout << ans << endl;
}