2019 ECNU XCPC March Selection 4

From EOJ Wiki
Jump to navigation Jump to search

ECNU XCPC March Selection #4

可能是 dp 专场了。

推荐资料

dp 没啥好推荐的资料。

打开 codeforces ,搜索 tag 为 dp 的,刷题。

Problem A

了解一下补题的重要性?

显然补题不只有这个作用。

要是补题还是不明显,以后可能还会这么搞。

[题解]

Problem B

Problem C

经典盒子装球问题中的一种。

可以 dp ,状态为:

$f[i][j]$ 表示 $i$ 个球放入 $j$ 个盒子的方案数。

搜索也是可以的:

$dfs(n,k,x)$ 表示将 $n$ 分成 $k$ 份,最小的一份 $\ge x$ 的方案数。

显然答案是 $dfs(m,n,0)$ 。记忆化搜索一下。

Problem D

Problem E

Problem F