2018 Multi-University, HDU Day 6
Problem A
Solved by ultmaster. 00:39 (+4)
Problem B
Solved by kblack. 02:12 (+2)
Problem C
Solved by kblack. 04:12 (+5)
Problem D
Problem E
Problem F
Problem G
Unsolved. (-6)
Problem H
Problem I
Problem J
Solved by kblack. 01:01 (+1)
Problem K
Upsolved by ultmaster. (-5)
题意:$M_n(i,j) = 1 \text{ if} \binom{i}{j} \bmod p > 0 \text{ else } 0$. $F(n,k) = \sum_{i = 0}^{p^n-1}\sum_{j=0}^{p^n-1}M_n^k(i,j)$. 求 $(\sum_{n=1}^N\sum_{k=1}^K F(n,k)) \bmod (10^9 + 7)$.
题解:打表找规律,最后发现如果枚举 $k$ 的话,是一个首项为 $q=p(p+1)\cdots(p+k)/(k+1)!$,公比也为 $q$ 的等比数列。求前 $N$ 项和即可。
ultmaster: 小学生常犯错误:等比数列求和直接套公式,从来不考虑公比为 $1$ 的情况,到最后都没看出来。(差点就有贡献了啊。。。心痛。。。
Problem L
Solved by kblack. 00:23 (+)
温暖的签到。