2019 Multi-University,Nowcoder Day 5
Problem A
Solved by Kilo_5723. 00:17:42 (+)
Problem B
Solved by Kilo_5723. 01:27:34 (+)
Problem C
Upsolved Weaver_zhu. (-8)
Problem D
Upsolved by Kilo_5723.
Problem E
Upsolved by Xiejiadong.
题意:求所有子图的最大独立集之和。
题解:$n$ 只有 $26$ 考虑状态压缩。
$f[x]$ 表示子图为 $x$ 的时候,最大独立集。
我们只考虑从最低位的转移,显然这个图的最大独立集变大了,只能是最低位加入的时候,他的相邻顶点都不在集合中,也就是状态 $x\&\sim (e[lowbit(x)])$ , $lowbit$ 表示最低位。
所以 $f[x]=max\{f[x-lowbit(x)],f[x\&\sim (e[lowbit(x)])]+1\}$ 。
Problem F
Upsolved by Xiejiadong. (-15)
题意:给出 $n$ 个数,求最大的数集,使得两两的二进制表示不同位数至少为 $2$ 。
题解:因为保证了每个数都是不同的,所以考虑将恰好有一位不同的数之间连边。
于是就相当于是求这个图的最大独立集。
可以很容易的发现这是一个二分图,如果 $x$ 和 $y,z$ 都恰好有一位不同,而因为 $y\neq z$ ,所以 $y,z$ 至少有两位不同。
二分图的最大独立集 = 点数 - 二分图匹配。
可行的方案,是通过再跑未匹配的交叉路标记来得到。
Problem G
Solved by Xiejiadong && Weaver_zhu. 03:42:19 (+)
题意:求字符串 $s$ 中有多少子序列(不能有前导 $0$ )满足按照数字比较比字符串 $t$ 大 。
题解:字符串 $s$ 中长度比 $t$ 大的很好处理,只要去掉 $0$ 开头的就好了。
长度相等的考虑用 dp 来做。 $f[i][j][k]$ 表示处理到第 $i$ 位,比较到了字符串 $t$ 的第 $j$ 位,前 $j$ 位是否相等 $k=0/1$ 。
暴力转移一下就好了。
读错题了。以为 $t$ 也是子序列。
数位 dp 这部分也是不需要的。
我又负输出了。
Problem H
Solved by Xiejiadong. 03:00:20 (+2)
题意:每次给出两个字母的相对关系,还原原字符串。
题解:每次给出的字母一定是包含了所有出现位置的,否则就是无解的情况。
于是我们先对所有的字母编号,然后在每次给出的顺序相邻之间连边(所有边都连的话,可能会 TLE )。
在连出的图中跑一个拓扑排序就好了。
Problem I
Solved by Kilo_5723. 03:13:09 (+1)
Problem J
Unsolved. (-12)