2018 CCPC Online Contest
oxx
Problem A
Solved by dreamcloud.
题意:
题解:
Problem B
Unsolved.
题意:
题解:
Problem C
Solved by oxx1108.
题意:在环中重载加法和乘法,使得在满足$(m + n) ^ p = m ^ p + n ^ p$ $p$是素数
题解:直接重载取模意义下的加和乘就行了。证明费马小定理。
Problem D
Solved by oxx1108.
题意:给定$a$和$n$求$b$和$c$,求满足$a ^ n + b ^ n = c ^ n$ 一组$b$,$c$
题解:n一定等于1或者2,然后1的时候显然,2的时候勾股数构造一下就可以了。($a$为2时平方无解,但是出题人友好地去掉了这个情况)
Problem E
Solved by oxx1108.
题意:求$(A*x+sqrt(B))^n$二项式定理展开的奇数项的和
题解:
Problem F
Unsolved.
题意:
题解:
Problem G
Unsolved.
题意:
题解:
Problem H
Unsolved.
题意:
题解:
Problem I
Solved by oxx1108.
题意:
题解:
Problem J
Solved by dreamcloud.
题意:
题解:
ECNU Foreigners
Problem A
Solved by kblack. 00:49 (+)
Problem B
Unsolved.
Problem C
Solved by zerol. 00:50 (+)
Problem D
Solved by zerol. 00:29 (+)
Problem E
Solved by ultmaster. 02:50 (+1)
题意:求 $\displaystyle \sum_{i=1}^n [i \equiv 1 \pmod 2] \frac{a^{n-i} \sqrt{b}^i n!}{i! (n-i)!}$。
题解:简单观察,或者使用 Mathematica 化简之后就可以得到所求式是 $\displaystyle \frac{1}{2} \left( (a + \sqrt{b})^n - (a - \sqrt{b})^n \right)$。发现 $(a+\sqrt{b})^n$ 一定具有 $a + c \sqrt{b}$ 的形式,直接快速幂即可。最后要把 $\sqrt{b}$ 中的平方因子提出来,暴力搞好像会 TLE(可能是前面模多了),要预处理。
处理模数要用到经典的技巧:先模 $2p$,然后最后除以 2。
Problem F
Unsolved. (-1)
Problem G
Solved by zerol. 03:03 (+3)
Problem H
Unsolved.
Problem I
Solved by kblack. 00:26 (+1)
Problem J
Solved by ultmaster. 00:36 (+)