Difference between revisions of "2018 Multi-University, HDU Day 7"

From EOJ Wiki
Jump to navigation Jump to search
Line 16: Line 16:
  
 
Upsolved by kblack. (-2)
 
Upsolved by kblack. (-2)
 +
 +
题意:$n$ 辆公交车,均匀概率地在一个时间点前到,如果 $T_i$ 还没到,就走路,公交车时间 $a$ 保证小于走路时间 $b$,求期望到家时间。
 +
 +
题解:两个部分,设 T 为最后等待的时间,最后走路的概率 $p = \sum_{i=1}^{n}{(1-\frac{min(L_i, T)}{m})}$,则假设公交也最后才开的期望时间为 $p \times (b+T) + (1-p) \times (a+T)$,然后减去公交车之前开的概率,这部分是$ \int_0^T {1-\prod_{i=1}^{n}(1-\frac{min(L_i, t)}{m})} dt$,这个要积的玩意儿是分段函数,最多分 $n$ 段,正确积分即可。
  
 
== Problem E ==
 
== Problem E ==

Revision as of 10:40, 13 August 2018

Problem A

Solved by kblack. 01:47 (+2)

题意:给一个边上带颜色的无向图,走的边颜色变化一次花 1,求最短路。

题解:边上加个点,到两个端点距离为 1,一个点出去的同色边缩一下,因为距离都是 1,跑 bfs 就好了,卡常。。。

Problem B

Solved by ultmaster. 04:56 (+4)

Problem C

Problem D

Upsolved by kblack. (-2)

题意:$n$ 辆公交车,均匀概率地在一个时间点前到,如果 $T_i$ 还没到,就走路,公交车时间 $a$ 保证小于走路时间 $b$,求期望到家时间。

题解:两个部分,设 T 为最后等待的时间,最后走路的概率 $p = \sum_{i=1}^{n}{(1-\frac{min(L_i, T)}{m})}$,则假设公交也最后才开的期望时间为 $p \times (b+T) + (1-p) \times (a+T)$,然后减去公交车之前开的概率,这部分是$ \int_0^T {1-\prod_{i=1}^{n}(1-\frac{min(L_i, t)}{m})} dt$,这个要积的玩意儿是分段函数,最多分 $n$ 段,正确积分即可。

Problem E

Solved by ultmaster. 00:57 (+1)

Problem F

Problem G

Problem H

Solved by ultmaster. 01:41 (+)

Problem I

Solved by zerol. 01:26 (+1)

Problem J

Solved by kblack. 00:43 (+1)

题意:$\left\{\begin{eqnarray*} F_1 &=& A \\ F_2 &=& B \\ F_n &=& C\cdot{}F_{n-2}+D\cdot{}F_{n-1}+\left\lfloor\frac{P}{n}\right\rfloor \end{eqnarray*}\right.$ 给定 A, B, C, D, P, n 求 $F_n$。

题解:$\lfloor{\frac{P}{n}}\rfloor$ 只有 $\sqrt{P}$ 种,分段快速幂就好了,注意分段的间隔。

Problem K

Solved by zerol. 02:04 (+)