2536. 求和

单点时限: 2.0 sec

内存限制: 256 MB

Fibonacci 数列大家已经熟悉 $F[1]=1\ F[2]=1\ F[n] = F[n-1] + F[n-2] (n \gt 2)​$

有一分数序列:

$\frac{2}{1},\frac{3}{2},\frac{5}{3},\frac{8}{5},\frac{13}{8},\frac{21}{13} \cdots$

该分数序列的通项为 $A[n] = \frac{F[n+2]}{F[n+1]}$

求出这个数列的前 $n(n \leqslant 13)$ 项之和。

输入格式

输入数据量 $t$ 表示下面有 $t$ 组数据

每组数据有一个正整数 $n$

输出格式

对于每组数据输出序列总和,格式见 sample

要求化成最简形式 即分母分子最大公约数为 1

样例

Input
2
1
2
Output
2/1
7/2

338 人解决,637 人已尝试。

461 份提交通过,共有 2471 份提交。

3.6 EMB 奖励。

创建: 11 年,7 月前.

修改: 2 年,1 月前.

最后提交: 5 天,18 小时前.

来源: 地理系C作业

题目标签