Difference between revisions of "2019 CCPC Final"
Jump to navigation
Jump to search
Xiejiadong (talk | contribs) |
|||
(10 intermediate revisions by 2 users not shown) | |||
Line 3: | Line 3: | ||
Xiejiadong: | Xiejiadong: | ||
− | * | + | * 周五太浪,周六讲座,赛前无练习,然后就丢脸了 |
− | * | + | * 周六热身赛就丢了个大脸 |
+ | * 正赛一个半小时就没题做了,菜的真实 | ||
+ | * 是不是周五中了个旷世的鼠标垫,用光了比赛需要的 RP 。 | ||
Kilo_5723: | Kilo_5723: | ||
+ | |||
+ | * 没得彻底。 | ||
+ | * 发现一个妙的不行的结论,以为 E 做出来了,原来又双叒叕只解决了第一部分。 | ||
Weaver_zhu: | Weaver_zhu: | ||
Line 47: | Line 52: | ||
Solved by Kilo_5723. 01:37:08 (+) | Solved by Kilo_5723. 01:37:08 (+) | ||
+ | |||
+ | 题意:有 $n$ 个颜色的方块,每两个颜色(可以相同)可以组成一个大块,总共有 $\frac{n \cdot (n+1)}{2}$ 种不同的大块,现在每种大块取一个,要求构造一个三维放置方案,使得每个颜色的小块互相连通。大块只能放置在整点上。 | ||
+ | |||
+ | 题解:$n=6$ 时构造如下: | ||
+ | |||
+ | 第一层: | ||
+ | 1 1 1 1 1 1 | ||
+ | 2 2 2 2 2 | ||
+ | 3 3 3 3 | ||
+ | 4 4 4 | ||
+ | 5 5 | ||
+ | 6 | ||
+ | 第二层: | ||
+ | 1 2 3 4 5 6 | ||
+ | 2 3 4 5 6 | ||
+ | 3 4 5 6 | ||
+ | 4 5 6 | ||
+ | 5 6 | ||
+ | 6 | ||
+ | |||
+ | 其中第一层和第二层对应位置上的方块构成一个大块。 | ||
== Problem J == | == Problem J == | ||
Line 55: | Line 81: | ||
Solved by Xiejiadong. 00:55:06 (+) | Solved by Xiejiadong. 00:55:06 (+) | ||
+ | |||
+ | 题意:求每一个子树里面所有的节点编号构成了多少个联通块。 | ||
+ | |||
+ | 题解:每一个子树用 set 维护节点编号。 | ||
+ | |||
+ | 暴力插入编号以后判断左右联通性,求出联通块数量。 | ||
+ | |||
+ | 直接启发式合并,就过去了。 | ||
== Problem L == | == Problem L == | ||
Solved by Kilo_5723. 00:36:34 (+1) | Solved by Kilo_5723. 00:36:34 (+1) | ||
+ | |||
+ | 题意:从矩阵的任意点出发,每次前进只能向右拐至多一次,问有多少种不同的路线能经过每个格子恰好一次。 | ||
+ | |||
+ | 题解:由于路线的性质,要么从外面一圈一圈绕到里面,要么从里面一圈一圈绕到外面,要么由两个绕成圈的路线在边界上组合。 | ||
+ | |||
+ | 特判了长条的情况后,发现前两种情况可以合并到第三种,答案是 $2n+2m-4$。 |
Latest revision as of 09:07, 21 November 2019
Replay
Xiejiadong:
- 周五太浪,周六讲座,赛前无练习,然后就丢脸了
- 周六热身赛就丢了个大脸
- 正赛一个半小时就没题做了,菜的真实
- 是不是周五中了个旷世的鼠标垫,用光了比赛需要的 RP 。
Kilo_5723:
- 没得彻底。
- 发现一个妙的不行的结论,以为 E 做出来了,原来又双叒叕只解决了第一部分。
Weaver_zhu:
Problem A
Solved by Xiejiadong. 00:20:45 (+1)
自定义排序签到。
Problem B
Unsolved.
Problem C
Unsolved.
Problem D
Unsolved.
Problem E
Unsolved. (-13)
Problem F
Unsolved.
Problem G
Unsolved.
Problem H
Unsolved.
Problem I
Solved by Kilo_5723. 01:37:08 (+)
题意:有 $n$ 个颜色的方块,每两个颜色(可以相同)可以组成一个大块,总共有 $\frac{n \cdot (n+1)}{2}$ 种不同的大块,现在每种大块取一个,要求构造一个三维放置方案,使得每个颜色的小块互相连通。大块只能放置在整点上。
题解:$n=6$ 时构造如下:
第一层:
1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 4 4 4 5 5 6
第二层:
1 2 3 4 5 6 2 3 4 5 6 3 4 5 6 4 5 6 5 6 6
其中第一层和第二层对应位置上的方块构成一个大块。
Problem J
Unsolved. (-2)
Problem K
Solved by Xiejiadong. 00:55:06 (+)
题意:求每一个子树里面所有的节点编号构成了多少个联通块。
题解:每一个子树用 set 维护节点编号。
暴力插入编号以后判断左右联通性,求出联通块数量。
直接启发式合并,就过去了。
Problem L
Solved by Kilo_5723. 00:36:34 (+1)
题意:从矩阵的任意点出发,每次前进只能向右拐至多一次,问有多少种不同的路线能经过每个格子恰好一次。
题解:由于路线的性质,要么从外面一圈一圈绕到里面,要么从里面一圈一圈绕到外面,要么由两个绕成圈的路线在边界上组合。
特判了长条的情况后,发现前两种情况可以合并到第三种,答案是 $2n+2m-4$。