EOJ Monthly 2018.10

B. 莫干山奇遇

单点时限: 2.0 sec

内存限制: 512 MB

出题人当然是希望出的题目有关 oxx,于是想方设法给题目配上一些有关 oxx 的背景故事,使得它看起来不那么无趣。但有的时候却无法引入合适的小姐姐,使得 oxx 显得非常可怜。所以出题人删除了故事,只留下一个枯燥乏味的数学问题。

【故事已删除】

给一个长度为 $n$ 的序列 $a_1,a_2,\ldots,a_n$,求一个长度为 $m$ 的序列 $b_1,b_2,\ldots,b_m$ 使得:

  • $a_1,a_2,\ldots,a_n$ 是 $b_1,b_2,\ldots,b_m$ 的子序列(不一定连续),且
  • 存在常数 $p > 0$ 使得 $b_1,b_2,\ldots,b_m$ 是一个 $p$-莫干山序列。

序列 $s_1,s_2,\ldots,s_n$ 是 $p$-莫干山序列,当且仅当:存在 $0 \le x < p$ 对于 $1 \le i \le n$ 满足 $s_i = (x + i) \bmod p$。

求 $m$ 的最小值。

输入格式

第一行一个整数 $n$ ($1 \le n \le 2 \cdot 10^5$)。

第二行 $n$ 个整数用空格隔开 $a_1,a_2,\ldots,a_n$ ($0 \le a_i \le 10^9$)。

输出格式

输出最小的 $m$。

样例

Input
2
0 2
Output
3
Input
3
0 2 0
Output
4
Input
1
0
Output
1
Input
10
0 1 2 3 5 6 7 8 9 1000000000
Output
1000000001
Input
3
0 1 2
Output
3

提示

样例 1: [0, 1, 2].

样例 2: [0, 1, 2, 0].

样例 3: [0].